首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the absence of repair, lesions accumulate in DNA. Thus, DNA persisting in specimens of paleontological, archaeological or forensic interest is inevitably damaged. We describe a strategy for the recovery of genetic information from damaged DNA. By molecular breeding of polymerase genes from the genus Thermus (Taq (Thermus aquaticus), Tth (Thermus thermophilus) and Tfl (Thermus flavus)) and compartmentalized self-replication selection, we have evolved polymerases that can extend single, double and even quadruple mismatches, process non-canonical primer-template duplexes and bypass lesions found in ancient DNA, such as hydantoins and abasic sites. Applied to the PCR amplification of 47,000-60,000-year-old cave bear DNA, these outperformed Taq DNA polymerase by up to 150% and yielded amplification products at sample dilutions at which Taq did not. Our results demonstrate that engineered polymerases can expand the recovery of genetic information from Pleistocene specimens and may benefit genetic analysis in paleontology, archeology and forensic medicine.  相似文献   

2.
We present a method to specifically select large sets of DNA sequences for parallel amplification by PCR using target-specific oligonucleotide constructs, so-called selectors. The selectors are oligonucleotide duplexes with single-stranded target-complementary end-sequences that are linked by a general sequence motif. In the selection process, a pool of selectors is combined with denatured restriction digested DNA. Each selector hybridizes to its respective target, forming individual circular complexes that are covalently closed by enzymatic ligation. Non-circularized fragments are removed by exonucleolysis, enriching for the selected fragments. The general sequence that is introduced into the circularized fragments allows them to be amplified in parallel using a universal primer pair. The procedure avoids amplification artifacts associated with conventional multiplex PCR where two primers are used for each target, thereby reducing the number of amplification reactions needed for investigating large sets of DNA sequences. We demonstrate the specificity, reproducibility and flexibility of this process by performing a 96-plex amplification of an arbitrary set of specific DNA sequences, followed by hybridization to a cDNA microarray. Eighty-nine percent of the selectors generated PCR products that hybridized to the expected positions on the array, while little or no amplification artifacts were observed.  相似文献   

3.
Analyses of degraded DNA are typically hampered by contamination, especially when employing universal primers such as commonly used in environmental DNA studies. In addition to false-positive results, the amplification of contaminant DNA may cause false-negative results because of competition, or bias, during the PCR. In this study, we test the utility of human-specific blocking primers in mammal diversity analyses of ancient permafrost samples from Siberia. Using quantitative PCR (qPCR) on human and mammoth DNA, we first optimized the design and concentration of blocking primer in the PCR. Subsequently, 454 pyrosequencing of ancient permafrost samples amplified with and without the addition of blocking primer revealed that DNA sequences from a diversity of mammalian representatives of the Beringian megafauna were retrieved only when the blocking primer was added to the PCR. Notably, we observe the first retrieval of woolly rhinoceros (Coelodonta antiquitatis) DNA from ancient permafrost cores. In contrast, reactions without blocking primer resulted in complete dominance by human DNA sequences. These results demonstrate that in ancient environmental analyses, the PCR can be biased towards the amplification of contaminant sequences to such an extent that retrieval of the endogenous DNA is severely restricted. The application of blocking primers is a promising tool to avoid this bias and can greatly enhance the quantity and the diversity of the endogenous DNA sequences that are amplified.  相似文献   

4.
Multiplex amplification of large sets of human exons   总被引:4,自引:0,他引:4  
A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.  相似文献   

5.
C/G-->T/A nucleotide alterations have been shown to hamper the straightforward interpretation of mitochondrial DNA sequence data derived from ancient tissues. Attempting to characterise this finding with respect to nuclear DNA, we contrasted two established protocols: (i) an enzymatic repair of damaged DNA, thereby translating and closing nicks in the DNA, and (ii) the application of N-phenacylthiazolium bromide, which cleaves glucose-derived protein crosslinks, presumably derived from Maillard reactions. We used medieval human bones that were refractory to standard PCR procedures. Due to negligible presence of short tandem repeat loci and also mitochondrial sequences, the extracted ancient DNA needed a higher copy PCR system to yield amplification products. The chosen PCR target was specific alphoid repetitive DNA with an experimentally determined minimum of 1000 copies per haploid genome. Alphoid repeat segments were generated from both contemporary DNA and DNA extracts of two human skeletons dating from 450-600 AD (omitting uracil N-glycosylase pre-treatment of the extracted samples), and were subsequently cloned and sequenced. The sequences were evaluated for the number and type of nucleotide alterations noted after the different pre-treatments, and were compared to our alphoid consensus sequence generated from modern DNA. Both methods failed to reflect the expected 32% variability among single alphoid repeats (accounting for locus-specific differences and polymerase errors) as well as to display the actual 2.88 ratio of transitions to transversions. Our data obtained from high-copy-number nuclear DNA mirror the phenomenon of sequence deviations observed in mitochondrial DNA extracted from old specimens.  相似文献   

6.
7.
Multiplex PCR amplification of three microsatellites within the CFTR gene   总被引:13,自引:0,他引:13  
Multiplex PCR amplification has been developed for three highly polymorphic microsatellites (IVS8CA, IVS17BTA, and IVS17BCA) located in intronic regions of the CFTR (cystic fibrosis (CF) transmembrane conductance regulator) gene. The triplex PCR reaction required different concentrations of each pair of primers and labeling of primers in the same reaction. Total informativity is obtained in 90.25% of couples requiring analysis of polymorphisms, and when triplex microsatellite analysis is combined with analysis for the six most common CF mutations in the Spanish population, informativity reaches more than 99%.  相似文献   

8.
An improved approach for increasing the multiplex level of single nucleotide polymorphism (SNP) typing by adapter ligation-mediated allele-specific amplification (ALM-ASA) has been developed. Based on an adapter ligation, each reaction requires n allele-specific primers plus an adapter-specific primer that is common for all SNPs. Thus, only n+1 primers are used for an n-plex PCR amplification. The specificity of ALM-ASA was increased by a special design of the adapter structure and PCR suppression. Given that the genetic polymorphisms in the liver enzyme cytochrome P450 CYP2D6 (debrisoquine 4-hydroxylase) have profound effects on responses of individuals to a particular drug, we selected 17 SNPs in the CYP2D6 gene as an example for the multiplex SNP typing. Without extensive optimization, we successfully typed 17-plex SNPs in the CYP2D6 gene by ALM-ASA. The results for genotyping 70 different genome samples by the 17-plex ALM-ASA were completely consistent with those obtained by both Sanger's sequencing and PCR restriction fragment length polymorphism (PCR-RFLP) analysis. ALM-ASA is a potential method for SNP typing at an ultra-low cost because of a high multiplex level and a simple optimization step for PCR. High-throughput SNP typing could be readily realized by coupling ALM-ASA with a well-developed automation device for sample processing.  相似文献   

9.
The recent development of multiplex ligation-dependent probe amplification (MLPA) has provided an efficient and reliable assay for dosage screening of multiple loci in a single reaction. However, a drawback to this method is the time-consuming process of generating a probe set by cloning in single-stranded bacteriophage vectors. We have developed a synthetic probe set to screen for deletions in a region spanning 18.5 Mb within chromosome 3q. In a pilot study, we tested 15 synthetic probes on 4 control samples and on 2 patients previously found to possess a heterozygous deletion in the region 3q26-q28. These synthetic probes detected deletions at all previously known deleted loci. Furthermore, using synthetic probes, the variability of results within samples was similar to that reported for commercially available M13-derived probes. Our results demonstrate that this novel approach to MLPA provides a generic solution to the difficulties of probe development by cloning; such synthetically generated probes may be used to screen a large number of loci in a single reaction. We conclude that the use of synthetic probes for MLPA is a rapid, robust, and efficient alternative for research (and potentially diagnostic) deletion and duplication screening of multiple genomic loci.  相似文献   

10.
Strand Displacement Amplification (SDA) is an isothermal, in vitro method of amplifying a DNA target sequence prior to detection [Walker et al (1992) Nucleic Acids Res., 20, 1691-1693]. Here we describe a multiplex form of SDA that allows two target sequences and an internal amplification control to be co-amplified by a single pair of primers after common priming sequences are spontaneously appended to the ends of target fragments. Multiplex SDA operates at a single temperature, under the same simple protocol previously developed for single-target SDA. We applied multiplex SDA to co-amplification of a target sequence (IS6110) that is specific to members of the Mycobacterium tuberculosis-complex and a target (16S ribosomal gene) that is common to most clinically relevant species of mycobacteria. Both targets are amplified 10(8)-fold during a 2 hour, single temperature incubation. The relative sensitivity of the system was evaluated across a number of clinically relevant mycobacteria and checked for crossreactivity against organisms that are closely related to mycobacteria.  相似文献   

11.
Assessing ancient DNA studies   总被引:17,自引:0,他引:17  
The study of ancient DNA has the potential to make significant and unique contributions to ecology and evolution. However, the techniques used contain inherent problems, particularly with regards to the generation of authentic and useful data. The solution currently advocated to reduce contamination and artefactual results is to adopt criteria for authentication. Nevertheless, these criteria are not foolproof, and we believe that they have, in practice, replaced the use of thought and prudence when designing and executing ancient DNA studies. We argue here that researchers in this field must take a more cognitive and self-critical approach. Specifically, in place of checking criteria off lists, researchers must explain, in sufficient enough detail to dispel doubt, how the data were obtained, and why they should be believed to be authentic.  相似文献   

12.
While the cost of DNA sequencing has dropped by five orders of magnitude in the past decade, DNA synthesis remains expensive for many applications. Although DNA microarrays have decreased the cost of oligonucleotide synthesis, the use of array-synthesized oligos in practice is limited by short synthesis lengths, high synthesis error rates, low yield and the challenges of assembling long constructs from complex pools. Toward addressing these issues, we developed a protocol for multiplex pairwise assembly of oligos from array-synthesized oligonucleotide pools. To evaluate the method, we attempted to assemble up to 2271 targets ranging in length from 192–252 bases using pairs of array-synthesized oligos. Within sets of complexity ranging from 131–250 targets, we observed error-free assemblies for 90.5% of all targets. When all 2271 targets were assembled in one reaction, we observed error-free constructs for 70.6%. While the assembly method intrinsically increased accuracy to a small degree, we further increased accuracy by using a high throughput ‘Dial-Out PCR’ protocol, which combines Illumina sequencing with an in-house set of unique PCR tags to selectively amplify perfect assemblies from complex synthetic pools. This approach has broad applicability to DNA assembly and high-throughput functional screens.  相似文献   

13.
Helicase-dependent isothermal DNA amplification   总被引:6,自引:0,他引:6       下载免费PDF全文
Vincent M  Xu Y  Kong H 《EMBO reports》2004,5(8):795-800
Polymerase chain reaction is the most widely used method for in vitro DNA amplification. However, it requires thermocycling to separate two DNA strands. In vivo, DNA is replicated by DNA polymerases with various accessory proteins, including a DNA helicase that acts to separate duplex DNA. We have devised a new in vitro isothermal DNA amplification method by mimicking this in vivo mechanism. Helicase-dependent amplification (HDA) utilizes a DNA helicase to generate single-stranded templates for primer hybridization and subsequent primer extension by a DNA polymerase. HDA does not require thermocycling. In addition, it offers several advantages over other isothermal DNA amplification methods by having a simple reaction scheme and being a true isothermal reaction that can be performed at one temperature for the entire process. These properties offer a great potential for the development of simple portable DNA diagnostic devices to be used in the field and at the point-of-care.  相似文献   

14.
Autosomal dominant (AD) familial hypercholesterolemia [FH; Mendelian Inheritance in Man (MIM) 143890] typically results from mutations in the LDL receptor gene (LDLR), which are now commonly diagnosed using exon-by-exon screening methods, such as exon-by-exon sequence analysis (EBESA) of genomic DNA (gDNA). However, many patients with FH have no LDLR mutation identified by this method. Part of the diagnostic gap is attributable to the genetic heterogeneity of AD FH, but another possible explanation is inadequate sensitivity of EBESA to detect certain mutation types, such as large deletions or insertions in LDLR. Multiplex ligation-dependent probe amplification (MLPA) is a new method that detects larger gDNA alterations that are overlooked by EBESA. We hypothesized that some FH patients with no LDLR mutation detectable by EBESA would have an abnormal LDLR MLPA pattern. In 70 unrelated FH patients, 44 had LDLR mutations detected by EBESA, including missense, RNA splicing, nonsense, or small deletion mutations, and 5 had the APOB R3500Q mutation. Among the remaining 21 AD FH patients with no apparent LDLR mutation, we found abnormal LDLR MLPA patterns in 12 and then demonstrated the deleted sequence in 5 of these. These findings indicate that MLPA may be a useful new adjunctive tool for the molecular diagnosis of FH.  相似文献   

15.
Loop-mediated isothermal amplification of DNA   总被引:126,自引:0,他引:126       下载免费PDF全文
We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem–loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem–loop DNA and a new stem–loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 109 copies of target in less than an hour. The final products are stem–loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.  相似文献   

16.
Hedrick P  Waits L 《Heredity》2005,94(5):463-464
  相似文献   

17.
Contrary to the generally held notions about microbial survival, the recently published paper by Johnson et al., 'Ancient bacteria show evidence of DNA repair', presents evidence suggesting that non-spore-forming bacteria in ancient samples are apparently alive, as judged by intact DNA, and fare better than spores. The data presented in this work raise intriguing questions about the nature of bacteria in many of the ancient samples reported to date: are they spores, persisters, sessile vegetative cells or do they make up a slow-growing population?  相似文献   

18.
DNA amplification fingerprinting of bacteria   总被引:12,自引:0,他引:12  
Summary We have amplified short arbitrary stretches of total bacterial DNA to produce highly characteristic and complex DNA fingerprints. This DNA amplification fingerprinting (DAF) strategy involves enzymatic amplification of DNA directed by a single arbitrary oligonucleotide primer. Amplification produces a characteristic spectrum of products that is adequately resolved by polyacrylamide gel electrophoresis and visualized by silver staining. Although DAF is simple in concept, we found that amplification parameters must be within an optimal range for reproducibility. We establish a safe window for these parameters, which include magnesium, primer and enzyme concentration as well as cycle number. The refined procedure was used to distinguish between clinical isolates of Streptococcus uberis, Klebsiella pneumoniae, and Escherichia coli. The use of template DNA concentrations higher than 1 ng·l–1 and high MgCl2 levels was especially important for reproductibility when amplifying small bacterial genomes. We tested a truncated Thermus aquaticus DNA polymerase, the Stoffel fragment, and found it more tolerant of reaction conditions, more efficient in the amplification of short products, and able to produce more informative fingerprints when compared to the normal thermostable polymerase from which it was derived. Because DAF produces representative fingerprints quickly and reliably from bacteria regardless of prior genetic or biochemical knowledge, we anticipate the general use of this diagnostic tool for bacterial identification and taxonomy.Correspondence to: G. Caetano-Anollés  相似文献   

19.
Twenty years after the advent of ancient DNA studies, this discipline seems to have reached the maturity formerly lacking to the fulfilment of its objectives. In its early development paleogenetics, as it is now acknowledged, had to cope with very limited data due to the technical limitations of molecular biology. It led to phylogenetic assumptions often limited in their scope and sometimes non-focused or even spurious results that cast the reluctance of the scientific community. This time seems now over and huge amounts of sequences have become available which overcome the former limitations and bridge the gap between paleogenetics, genomics and population biology. The recent studies over the charismatic woolly mammoth (independent sequencing of the whole mitochondrial genome and of millions of base pairs of the nuclear genome) exemplify the growing accuracy of ancient DNA studies thanks to new molecular approaches. From the earliest publications up to now, the number of mammoth nucleotides was multiplied by 100,000. Likewise, populational approaches of ice-age taxa provide new historical scenarios about the diversification and extinction of the Pleistocene megafauna on the one hand, and about the processes of domestication of animal and vegetal species by Man on the other. They also shed light on the differential structure of molecular diversity between short-term populational research (below 2 My) and long-term (over 2 My) phylogenetic approaches. All those results confirm the growing importance of paleogenetics among the evolutionary biology disciplines.  相似文献   

20.
The multiplex amplification test system for the identification of Bacillus anthracis with primers to plasmid cya (pX01), capC (pX02) genes and chromosomal sap gene were developed. The primers to sap gene were selected by the authors and, after being tested on 72 microbial strains of the genus Bacillus, proposed as more specific in comparison with the known primers to chromosomal locus Ba 813. The proposed test system permitted the simultaneous identification of B. anthracis of all plasmid variants, the evaluation of their potential virulence and the differentiation of B. anthracis nonplasmid strains from bacilli of the group Bacillus cereus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号