首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physiological state control of fermentation processes   总被引:1,自引:0,他引:1  
In this article a novel approach to the control of fermentation processes is introduced. A "physiological state control approach" has been developed using the concept of representing fermentation processes through the current physiological state of the cell culture. No conventional mathematical model is required for the synthesis of such a control system.The main idea is based on the fact that during batch, feed-batch, or even continuous cultivation the physiological characteristics of the cell population, jointly expressed by the term "physiological state", are not constant but rather variable, which is reflected in expected or unexpected changes in the behavior of the control plant, and which requires flexible alteration of the current control strategy. The proposed approach involves decomposition of the physiological state space into several subspaces called "physiological situations." In every physiological situation the cell population expresses stable characteristics, and therefore an invariant control strategy can be effectively applied. The on-line functions of the physiological state control system consist of the calculation of physiological state variables, determination of the current physiological situation as an element of a previously defined set of known physiological situations, switching of the relevant control strategy, and calculation of the control action. Attention is focused on the synthesis of the novel and nonstandard part of the control system - the algorithm for online recognition of the current physiological state. To this end an effective approach, based on artificial intelligence methods, particularly fuzzy sets theory and pattern recognition theory, was developed. Its practical realization is demonstrated using data from a continuous fermentation process for single cell protein production.  相似文献   

2.
There is currently tremendous interest in how the physiology of individual animals changes and develops during ontogeny. One of the key areas is the extent to which the timing and/or rate of physiological development is fixed within an individual and to what extent can it be altered. We propose that plasticity in the timing of the onset of a particular physiological regulatory system during an individuals development be referred to as physiological heterokairy (to clearly distinguish this phenomenon from physiological heterochrony, which is an evolutionary pattern), and we marshal evidence for three different patterns of heterokairy: 1. altering relative position in the physiological itinerary; 2. altering overall rate of development per se and; 3. a combination of 1 and 2. Using these patterns as a starting point, we develop a framework for investigating physiological heterokairy which takes cognizance of the facts that multiple components of each regulatory system could appear at different times and multiple regulatory systems could come 'on-line' at different times. We finish by placing physiological heterokairy in the wider context of its ecological and evolutionary implications and its relationship to physiological genomics and heterochrony.  相似文献   

3.
We have developed Quantitative Circulatory Physiology (QCP), a mathematical model of integrative human physiology containing over 4,000 variables of biological interactions. This model provides a teaching environment that mimics clinical problems encountered in the practice of medicine. The model structure is based on documented physiological responses within peer-reviewed literature and serves as a dynamic compendium of physiological knowledge. The model is solved using a desktop, Windows-based program, allowing students to calculate time-dependent solutions and interactively alter over 750 parameters that modify physiological function. The model can be used to understand proposed mechanisms of physiological function and the interactions among physiological variables that may not be otherwise intuitively evident. In addition to open-ended or unstructured simulations, we have developed 30 physiological simulations, including heart failure, anemia, diabetes, and hemorrhage. Additional stimulations include 29 patients in which students are challenged to diagnose the pathophysiology based on their understanding of integrative physiology. In summary, QCP allows students to examine, integrate, and understand a host of physiological factors without causing harm to patients. This model is available as a free download for Windows computers at http://physiology.umc.edu/themodelingworkshop.  相似文献   

4.
This paper presents a model describing how the uncertainty due to influential exogenous processes combines with stochasticity intrinsic to physiological aging processes and propagates through time to generate uncertainty about the future physiological state of the population. Variance expressions are derived for (a) the future values of the physiological variables under the assumption that external factors evolve under a linear stochastic diffusion process, and (b) the cohort survival functions and cohort life expectancies which reflect the uncertainty in the future values of the physiological variables. The model implies that a major component of uncertainty in forecasts of the physiological characteristics of a closed cohort is due to differential rates of survival associated with different realizations of the external process. This suggests that the limits to forecasting may be different in physiological systems subject to systematic mortality than in physical systems such as weather where the concepts of closed cohorts and of mortality selection have no simple analog.  相似文献   

5.
6.
DNA microarrays have revolutionized gene expression studies and made large-scale parallel measurement of whole genome expression a feasible technique in model species where genomes are well characterized. Such studies are perfectly suited to unraveling the complex regulation and/or interaction of both genes and proteins likely involved in most physiological processes. Gene expression profiles are currently being used to identify genes underlying a range of physiological responses. Characterization of these genes will help to elucidate the pathways and processes regulating physiological processes. Expanding the use of DNA microarrays to non-model species that have been critical in elucidating certain physiological pathways will be valuable in determining the genes associated with these processes. Approaches that do not require complete genome information have recently been applied to "non-model" organisms. As whole genomes are sequenced for non-model organisms, the application of DNA microarrays to comparative physiology will expand even further. The recent development of protein microarrays will be critical in understanding the regulation of physiological processes not accounted for at the genomic level. Together, DNA and protein microarrays provide the most thorough and efficient method of understanding the molecular basis of physiological processes to date. In turn, classical physiological approaches will be vital in characterizing and verifying the function of the novel genes identified by microarray experiments. Ultimately, DNA and protein microarray expression profiles may be used to predict physiological responses.  相似文献   

7.
Implementation of advanced control strategies in bioprocesses is often hindered by the lack of on-line measurements reflecting the physiological state of the culture. Although a number of techniques have been used to estimate key variables from data monitored on-line, these often do not explicitly take into account changes in physiological state and information on many aspects of physiological state that may not be present in on-line data. Here we demonstrate that data obtained from chemical fingerprinting methods, such as pyrolysis mass spectrometry, can be used to identify changes in the physiological state during cultivation. This information can be utilized for the estimation of the physiological state and can enable physiological state-specific-model development for on-line bioprocess control.  相似文献   

8.

Aims

Abnormal physiological stress reactivity is increasingly investigated as a vulnerability marker for various physical and psychological health problems. However, studies are inconsistent in taking into account potential covariates that may influence the developing stress system. We systematically tested determinants (individual, developmental, environmental and substance use-related) of physiological and perceived physiological stress reactivity. We also examined the relation between physiological and perceived physiological stress reactivity.

Method

In a stratified sample of 363 children (7–12 years) and 344 adolescents (13–20 years) from the general population, we examined cortisol, heart rate, respiratory sinus arrhythmia and perceived physiological stress reactivity to a psychosocial stress procedure.

Results

Using multivariate linear regression models, we found that individual, developmental, environmental and substance use-related factors were related to each of the stress response indices. These determinant factors were different for each of the stress reactivity indices, and different in children versus adolescents. Perceived physiological stress reactivity predicted cortisol reactivity in adolescents only. All other relations between perceived physiological and physiological stress reactivity were not significant.

Conclusions

As physiological stress variables are often examined as vulnerability markers for the development of health problems, we maintain that it is essential that future studies take into consideration factors that may account for found relations. Our study provides an overview and indication of which variables should be considered in the investigation of the relation between physiological stress indices and illness.  相似文献   

9.
Dynamic regulation of biological systems requires real-time assessment of relevant physiological needs. Biosensors, which transduce biological actions or reactions into signals amenable to processing, are well suited for such monitoring. Typically, in vivo biosensors approximate physiological function via the measurement of surrogate signals. The alternative approach presented here would be to use biologically based biosensors for the direct measurement of physiological activity via functional integration of relevant governing inputs. We show that an implanted excitable-tissue biosensor (excitable cardiac tissue) can be used as a real-time, integrated bioprocessor to analyze the complex inputs regulating a dynamic physiological variable (heart rate). This approach offers the potential for long-term biologically tuned quantification of endogenous physiological function.  相似文献   

10.
Evolutionary physiology is the emerging physiological discipline. Unlike environmental physiology or ecophysiology, whose definitions have long been made quite clear, evolutionary physiology has a broader scope of objectives, and its definition lacks a concise treatise. This paper presents the argument that the lack of a common definition of evolutionary physiology is retarding the unification of the mechanistic and amechanistic physiological sciences, a multidisciplinary obligation crucial for a holistic understanding of a physiological basis of fitness. The divide between mechanistic "how" questions, devoted primarily to homeostasis, and evolutionary "why" questions, concerned with understanding phenotypic and genotypic physiological variation, remains broad and is currently not conducive to synergy in the physiological disciplines. Unification may be facilitated, however, by embracing a common currency of measurement and analysis. A likely candidate is the cascade of energy from the environment to offspring and the evolution of physiological form and function, including homeostasis, associated with power management. This currency approach seeks to identify an energetic basis of fitness, namely, whether or how the evolution of life-history traits is influenced by energetic constraints and/or trade-offs.  相似文献   

11.
OBJECTIVE--To compare the effects on fetal and maternal morbidity of routine active management of third stage of labour and expectant (physiological) management, in particular to determine whether active management reduced incidence of postpartum haemorrhage. DESIGN--Randomised trial of active versus physiological management. Women entered trial on admission to labour ward with allocation revealed just before vaginal delivery. Five months into trial high rate of postpartum haemorrhage in physiological group (16.5% v 3.8%) prompted modification of protocol to exclude more women and allow those allocated to physiological group who needed some active management to be switched to fully active management. Sample size of 3900 was planned, but even after protocol modification a planned interim analysis after first 1500 deliveries showed continuing high postpartum haemorrhage rate in physiological group and study was stopped. SETTING--Maternity hospital. PARTICIPANTS--Of 4709 women delivered from 1 January 1986 to 31 January 1987, 1695 were admitted to trial and allocated randomly to physiological (849) or active (846) management. Reasons for exclusion were: refusal, antepartum haemorrhage, cardiac disease, breech presentation, multiple pregnancy, intrauterine death, and, after May 1986, ritodrine given two hours before delivery, anticoagulant treatment, and any condition needing a particular management of third stage. INTERVENTIONS--All but six women allocated to active management actually received it, having prophylactic oxytocic, cord clamping before placental delivery, and cord traction; whereas just under half those allocated to physiological management achieved it. A fifth of physiological group received prophylactic oxytocic, two fifths underwent cord traction and just over half clamping of the cord before placental delivery. ENDPOINT--Reduction in incidence of postpartum haemorrhage from 7.5% under physiological management to 5.0% under active management. MEASUREMENTS AND MAIN RESULTS--Incidence of postpartum haemorrhage was 5.9% in active management group and 17.9% in physiological group (odds ratio 3.13; 95% confidence interval 2.3 to 4.2), a contrast reflected in other indices of blood loss. In physiological group third stage was longer (median 15 min v 5 min) and more women needed therapeutic oxytocics (29.7% v 6.4%). Apgar scores at one and five minutes and incidence of neonatal respiratory problems were not significantly different between groups. Babies in physiological group weighed mean of 85 g more than those in active group. When women allocated to and receiving active management (840) were compared with those who actually received physiological management (403) active management still produced lower rate of postpartum haemorrhage (odds ratio 2.4;95% CI1.6 to 3.7). CONCLUSIONS--Policy of active management practised in this trial reduces incidence of postpartum haemorrhage, shortens third stage, and results in reduced neonatal packed cell volume.  相似文献   

12.
农药诱导害虫再猖獗机制   总被引:6,自引:1,他引:5  
吴进才 《昆虫知识》2011,48(4):799-803
害虫再猖獗是农林害虫防治中出现的普遍现象,包括生态再猖獗和生理再猖獗.前者的机制主要是药剂削弱了自然控制作用,后者主要是药剂引起害虫的毒物兴奋效应及补偿作用(刺激产卵).作者团队最新研究证明,药剂刺激产卵是由于药剂激活了脂肪体RNA转录水平,使卵黄蛋白基因表达量显著上调;两性交配昆虫药剂同样刺激雄性生殖并能通过交配传导...  相似文献   

13.
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host–microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host–microbe interaction and successful commensalism to institute a human gut microbiome.  相似文献   

14.
Applications of fractal analysis to physiology   总被引:6,自引:0,他引:6  
This review describes approaches to the analysis of fractal properties of physiological observations. Fractals are useful to describe the natural irregularity of physiological systems because their irregularity is not truly random and can be demonstrated to have spatial or temporal correlation. The concepts of fractal analysis are introduced from intuitive, visual, and mathematical perspectives. The regional heterogeneities of pulmonary and myocardial flows are discussed as applications of spatial fractal analysis, and methods for estimating a fractal dimension from physiological data are presented. Although the methods used for fractal analyses of physiological data are still under development and will require additional validation, they appear to have great potential for the study of physiology at scales of resolution ranging from the microcirculation to the intact organism.  相似文献   

15.
In a study of the interactions between glycolytic enzymes and cytoskeletal structure, the effect of increasing the degree of molecular crowding by the addition of physiological concentrations of saline and protein was studied. Increasing the ionic strength to physiological levels resulted in only a slight decrease in the retention of most of enzymes, whereas the establishment of physiological concentrations of both saline and protein, caused a markedly increased degree of binding of all the glycolytic enzymes. The implications of this data have been discussed in relation to the relative affinities of interaction of the individual components, the influence of molecular crowding and the physiological significance of this phenomenon.  相似文献   

16.
Increases in glucose and urea output in response to increasing glucagon concentration have been studied in isolated livers perfused with physiological concentrations of amino acids. Glucose output was more sensitive to glucagon than urea output. A period of non-perfusion caused a subsequent loss of responsiveness to glucagon concentrations, at the high end of the physiological range, but the response to glucagon at the low end of the physiological range was unaffected. This probably represents a post-receptor effect rather than alterations at the receptor level.  相似文献   

17.
Efforts to develop new crop varieties with improved salt tolerance have been intensified over the past 15–20 years. Despite the existence of genetic variation for salt tolerance within species, and many methods available for expanding the source of genetic variation, there is only a limited number of varieties that have been developed with improved tolerance. These new varieties have all been based upon selection for agronomic characters such as yield or survival in saline conditions. That is, based upon characters that integrate the various physiological mechanisms responsible for tolerance. Yet over the same time period, knowledge of physiological salt responses has increased substantially.Selection and breeding to increase salt tolerance might be more successful if selection is based directly on the physiological mechanisms or characters conferring tolerance. Basic questions associated with using physiological selection criteria are discussed in the paper. These are centred around the need for genetic variation, the importance of the targeted mechanism, the ease of detection of the physiological mechanism (including the analytical requirements) and the breeding strategy. Many mechanisms, including ion exclusion, ion accumulation, compatible solute production and osmotic adjustment have been associated with genetic variation in salt tolerance. Yet their successful use in improving salt tolerance, via physiological selection criteria, is largely non-existent. Consideration is given to the role of physiological criteria in the short and long term in improving salt tolerance. In several glycophytic species, particularly legumes, physiological selection based on ion exclusion from the shoots shows promise. Recent results for white clover indicate the potential for using a broad physiological selection criterion of restricted Cl accumulation in the shoots, with scope for future refinement based upon the specific physiological characters that combined result in ion exclusion.  相似文献   

18.
Climate variability is a key driver of physiological responses in common grass species in grasslands of North America. Differences in microanatomical traits among coexisting species may influence physiological responses to climate variability over large geographic scales. The goal of this research was to determine leaf-level physiological and microanatomical trait variability among four dominant C4 grass species across a natural precipitation gradient. Physiological traits were observed to vary significantly across the gradient with greater variability than microanatomical traits. Microanatomical traits were shown to predict physiological responses in A. gerardii and P. virgatum, but the nature of the relationships varied between species. These results illustrate that microanatomical and physiological traits vary across a precipitation gradient, there are clear linkages between microanatomy and physiology in grass species, and this evidence underscores the need for further investigation using phylogenetically diverse assemblages.  相似文献   

19.
Modern manufacturing and design should satisfy not only the requirements of high cost performance but also of the user. Besides that, the social environment which surrounds manufacturing is rapidly changing depending on new technologies. To create future products with user satisfaction, the effective use of human physiological data is essential. This is where knowledge of physiological anthropology can be applied. Physiological anthropologists have been pointing out a limit to the interpretation of the physiological data based on its average value. They have begun to notice that the physiological functions of humans show various types according to the blended effect of heredity and the surroundings. Adequate consideration of physiological polymorphism is indispensable to accomplish manufacturing that is well devised for human. In this study the concept of manufacturing and design based on physiological polymorphism is expressed. The target and the methodology for new manufacturing are discussed in seven fields, that is, welfare equipment, clothes, artificial tissue, sporting gear, furniture, building materials, and human interface. Through the above discussion, a procedure to achieve manufacturing and design based on physiological polymorphism is proposed.  相似文献   

20.
This study is aimed at assessing the effects of multiple stressors (thermal shock, fishing capture, and exposure to air) on the benthic stomatopod Squilla mantis, a burrowing crustacean quite widespread in the Mediterranean Sea. Laboratory analyses were carried out to explore the physiological impairment onset over time, based on emersion and thermal shocks, on farmed individuals. Parallel field-based studies were carried out to also investigate the role of fishing (i.e., otter trawling) in inducing physiological imbalance in different seasonal conditions. The dynamics of physiological recovery from physiological disruption were also studied. Physiological stress was assessed by analysing hemolymph metabolites (L-Lactate, D-glucose, ammonia, and H+), as well as glycogen concentration in muscle tissues. The experiments were carried out according to a factorial scheme considering the three factors (thermal shock, fishing capture, and exposure to air) at two fixed levels in order to explore possible synergistic, additive, or antagonistic effects among factors. Additive effects on physiological parameters were mainly detected when the three factors interacted together while synergistic effects were found as effect of the combination of two factors. This finding highlights that the physiological adaptive and maladaptive processes induced by the stressors result in a dynamic response that may encounter physiological limits when high stress levels are sustained. Thus, a further increase in the physiological parameters due to synergies cannot be reached. Moreover, when critical limits are encountered, mortality occurs and physiological parameters reflect the response of the last survivors. In the light of our mortality studies, thermal shock and exposure to air have the main effect on the survival of S. mantis only on trawled individuals, while lab-farmed individuals did not show any mortality during exposure to air until after 2 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号