首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salmonella enterica serovar Enteritidis is one of the most frequently reported causes of foodborne illness. It is a major threat to the food safety chain and public health. A highly amplified bio-barcode DNA assay for the rapid detection of the insertion element (Iel) gene of Salmonella Enteritidis is reported in this paper. The biosensor transducer is composed of two nanoparticles: gold nanoparticles (Au-NPs) and magnetic nanoparticles (MNPs). The Au-NPs are coated with the target-specific DNA probe which can recognize the target gene, and fluorescein-labeled barcode DNA in a 1:100 probe-to-barcode ratio. The MNPs are coated with the 2nd target-specific DNA probe. After mixing the nanoparticles with the 1st target DNA, the sandwich structure (MNPs-2nd DNA probe/Target DNA/1st DNA probe-Au-NPs-barcode DNA) is formed. A magnetic field is applied to separate the sandwich from the unreacted materials. Then the bio-barcode DNA is released from the Au-NPs. Because the Au-NPs have a large number of barcode DNA per DNA probe binding event, there is substantial amplification. The released barcode DNA is measured by fluorescence. Using this technique, the detection limit of this bio-barcode DNA assay is as low as 2.15 x 10(-16)mol (or 1 ng/mL).  相似文献   

2.
Nam JM  Jang KJ  Groves JT 《Nature protocols》2007,2(6):1438-1444
The colorimetric bio-barcode assay is a red-to-blue color change-based protein detection method with ultrahigh sensitivity. This assay is based on both the bio-barcode amplification method that allows for detecting miniscule amount of targets with attomolar sensitivity and gold nanoparticle-based colorimetric DNA detection method that allows for a simple and straightforward detection of biomolecules of interest (here we detect interleukin-2, an important biomarker (cytokine) for many immunodeficiency-related diseases and cancers). The protocol is composed of the following steps: (i) conjugation of target capture molecules and barcode DNA strands onto silica microparticles, (ii) target capture with probes, (iii) separation and release of barcode DNA strands from the separated probes, (iv) detection of released barcode DNA using DNA-modified gold nanoparticle probes and (v) red-to-blue color change analysis with a graphic software. Actual target detection and quantification steps with premade probes take approximately 3 h (whole protocol including probe preparations takes approximately 3 days).  相似文献   

3.
The formation of DNA three-way junction (3WJ) structures has been utilised to develop a novel isothermal nucleic acid amplification assay (SMART) for the detection of specific DNA or RNA targets. The assay consists of two oligonucleotide probes that hybridise to a specific target sequence and, only then, to each other forming a 3WJ structure. One probe (template for the RNA signal) contains a non-functional single-stranded T7 RNA polymerase promoter sequence. This promoter sequence is made double-stranded (hence functional) by DNA polymerase, allowing T7 RNA polymerase to generate a target-dependent RNA signal which is measured by an enzyme-linked oligosorbent assay (ELOSA). The sequence of the RNA signal is always the same, regardless of the original target sequence. The SMART assay was successfully tested in model systems with several single-stranded synthetic targets, both DNA and RNA. The assay could also detect specific target sequences in both genomic DNA and total RNA from Escherichia coli. It was also possible to generate signal from E.coli samples without prior extraction of nucleic acid, showing that for some targets, sample purification may not be required. The assay is simple to perform and easily adaptable to different targets.  相似文献   

4.
Sequence-specific detection of polynucleotides typically requires modified reporter probes that are labeled with radioactive, fluorescent, or luminescent moieties. Although these detection methods are capable of high sensitivity, they require instrumentation for signal detection. In certain settings, such as clinical point of care, instrumentation might be impractical or unavailable. Here we describe a detection approach in which formation of a nucleic acid hybrid is enzymatically transduced into a molecular thin film that can be visually detected in white light. The system exploits a flat, optically coated silicon-based surface to which capture oligonucleotides are covalently attached. The optimized system is capable of detection of nucleic acid targets present at sub-attomole levels. To supplement visual detection, signals can be quantitated by a charge-coupled device. The design and composition of the optical surface, optimization of immobilization chemistry for attachment of capture probes, and characterization of the efficiency of the hybridization process are presented. We describe the application of this system to detection of a clinically relevant target, the mecA gene present in methicillin-resistant Staphylococcus aureus.  相似文献   

5.
The recently developed bio-barcode (BBC) assay using polymerase chain reaction (PCR) to generate signals has been shown to be an extraordinarily sensitive method to detect protein targets. The BBC assay involves a magnetic microparticle (with antibody to capture the target of interest) and gold nanoparticle (with recognition antibody and thiolated single-stranded barcode DNAs) to form a sandwich around the target. The concentration of target is determined by the amount of barcode DNA released from the nanoparticles. Here we describe a modification using aptamers to substitute the gold nanoparticles for the BBC assay. In this study, we isolated a 76-mer monoclonal aptamer against cytochrome-c (cyto-c) and this single-stranded DNA in defined 3D structure for cyto-c was used in the BBC assay for both recognition and readout reporting. After magnetic separation, the aptamer was amplified by PCR and this aptamer-based barcode (ABC) assay was sensitive enough to detect the cyto-c in culture medium released from the apoptotic cells after drug treatment at the picomolar level. When compared to the conventional cyto-c detection by Western blot analysis, our ABC assay is sensitive, and time for the detection and quantification with ready-made probes was only 3 h.  相似文献   

6.
A nucleic acid sequence-based amplification (NASBA) assay in combination with a molecular beacon was developed for the real-time detection and quantification of hepatitis A virus (HAV). A 202-bp, highly conserved 5' noncoding region of HAV was targeted. The sensitivity of the real-time NASBA assay was tested with 10-fold dilutions of viral RNA, and a detection limit of 1 PFU was obtained. The specificity of the assay was demonstrated by testing with other environmental pathogens and indicator microorganisms, with only HAV positively identified. When combined with immunomagnetic separation, the NASBA assay successfully detected as few as 10 PFU from seeded lake water samples. Due to its isothermal nature, its speed, and its similar sensitivity compared to the real-time RT-PCR assay, this newly reported real-time NASBA method will have broad applications for the rapid detection of HAV in contaminated food or water.  相似文献   

7.
《Biophysical journal》2022,121(23):4467-4475
The kinetics by which individual enveloped viruses fuse with membranes provide an important window into viral-entry mechanisms. We have developed a real-time assay using fluorescent probes for single-virus genome exposure than can report on stages of viral entry including or subsequent to fusion pore formation and prior to viral genome trafficking. We accomplish this using oxazole yellow nucleic-acid-binding dyes, which can be encapsulated in the lumen of target membranes to permit specific detection of fusion events. Since increased fluorescence of the dye occurs only when it encounters viral genome via a fusion pore and binds, this assay excludes content leakage without fusion. Using this assay, we show that influenza virus fuses with liposomes of different sizes with indistinguishable kinetics by both testing liposomes extruded through pores of different radii and showing that the fusion kinetics of individual liposomes are uncorrelated with the size of the liposome. These results suggest that the starting curvature of such liposomes does not control the rate-limiting steps in influenza entry.  相似文献   

8.
9.
AIMS: To use molecular beacon based nucleic acid sequence-based amplification (NASBA) to develop a rapid, sensitive, specific detection method for norovirus (NV) genogroupII (GII). METHODS AND RESULTS: A method to detect NV GII from environmental samples using real-time NASBA was developed. This method was routinely sensitive to 100 copies of target RNA and intermittent amplification occurred with as few as 10 copies. Quantitative estimates of viral load were possible over at least four orders of magnitude. CONCLUSIONS: The NASBA method described here is a reliable and sensitive assay for the detection of NV. This method has the potential to be linked to a handheld NASBA device that would make this real-time assay a portable and inexpensive alternative to bench-top, lab-based assays. SIGNIFICANCE AND IMPACT OF THE STUDY: The development of the real-time NASBA assay described here has resulted in a simple, rapid (<1 h), convenient testing format for NV. To our knowledge, this is the first example of a molecular beacon based NASBA assay for NV.  相似文献   

10.
11.
Biosensor devices, based on the conversion of nucleic acid recognition reactions into useful electrical signals, offer considerable promise for DNA diagnostics. The unique hybridization properties of solution-phase PNA can be extrapolated onto transducer surfaces in connection with the design of remarkably specific DNA biosensors. This article reviews the development of PNA biosensors, and discusses common PNA-biosensing protocols along with their prospects in DNA biosensor technology.  相似文献   

12.
Because loop-mediated isothermal amplification (LAMP) can amplify substantial amounts of DNA under isothermal conditions, its applications for simple genetic testing have attracted considerable attention. A positive LAMP reaction is indicated by the turbidity caused by by-products or by the color change after adding a metallochromic indicator to the reaction solution, but these methods have certain limitations. Leuco crystal violet (LCV), a colorless dye obtained after sodium sulfite treatment of crystal violet (CV), was used as a new colorimetric method for detecting LAMP. LCV is reconverted into CV through contact with double-stranded DNA (dsDNA). Therefore, the positive reaction of LAMP is indicated by color change from colorless to violet. The assay is sensitive enough to detect LAMP products, with a detection limit of 7.1 ng/μl for dsDNA. It is also highly selective to dsDNA, and interference with single-stranded DNA and deoxynucleotide triphosphates (dNTPs) is not observed. LCV facilitates direct colorimetric detection of the main product rather than a by-product of the LAMP reaction; therefore, this method can be used under various reaction conditions such as those with added pyrophosphatase in solution. This colorimetric LAMP detection method using LCV is useful for point-of-care genetic testing given its simplicity.  相似文献   

13.
Some of the most serious diseases are characterized by the presence of a specific secondary structure within DNA or RNA, often in the promoter or the coding region of the responsible gene, that enhances or disrupts expression of the protein. Structural elements that impact cellular function may also be formed in other genomic regions such as telomeres. Compounds that interact with such structural elements may be useful in diagnosis or treatment of patients. In this report, we present a FRET melting assay that allows testing of libraries of compounds against four different nucleic acid structures. Compounds are tested to determine whether they stabilize preformed secondary structures (i.e., whether they cause an increase in melting temperature (T(m))). This property is described by the ΔT(m) parameter, which is the difference between the T(m) of the compound-stabilized structure and the T(m) of the unbound structure. Model oligonucleotides are labeled with FAM as a fluorescent donor and TAMRA as an acceptor. The intensity of FAM fluorescence is recorded as a function of temperature. Melting temperatures are determined by the FRET method in 96-well plates; this assay could easily be converted into 384-well format.  相似文献   

14.
The branched DNA hybridization assay has been improved by the inclusion of the novel nucleotides, isoC and isoG, in the amplification sequences to prevent non-specific hybridization. The novel isoC, isoG-containing amplification sequences have no detectable interaction with any natural DNA sequence. The control of non-specific hybridization in turn permits increased signal amplification. Addition of a 14 site preamplifier was found to increase the signal/noise ratio 8-fold. A set of 74 oligonucleotide probes was designed to the consensus HIV POL sequence. The detection limit of this new HIV branched DNA amplifier assay was approximately 50 molecules/ml. The assay was used to measure viral load in 87 plasma samples of HIV- infected patients on triple drug therapy whose RNA titers were <500 molecules/ml. In all 11 patients viral load eventually declined to below the detection limit with the new assay.  相似文献   

15.
16.
17.
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus that causes the outbreak of coronavirus disease 2019 (COVID-19) (Li et al., 2020a). Viral nucleic acid testing is the standard method for the laboratory diagnosis of COVID-19 (Wu et al., 2020a; Zhu et al., 2020). Currently, a variety of qPCR-based detection kits are used for laboratory-based detection and confirmation of SARS-CoV-2 infection (Corman et al., 2020; Hussein et al., 2020; Ruhan et al., 2020; Veyer et al., 2020). Conventional qPCR involves virus inactivation, nucleic acid extraction, and qPCR amplification procedures. Therefore, the process is complicated, which usually takes longer than 2 h, and requires biosafety laboratories and professional staff. Thus, qPCR is not suitable for use in field or medical units. To reduce the operation steps, automatic integrated qPCR detection systems that combine nucleic acid extraction and qPCR amplification in a sealed cartridge were developed to detect viruses in clinical samples (Li et al., 2020b). However, the detection time is still longer than 1 h. Therefore, rapid nucleic acid detection systems are needed to further improve the detection efficiency.  相似文献   

18.
A high-resolution scanning Kelvin nanoprobe is introduced as an alternative technique to the conventional fluorescence and mass spectrometric detection methods currently employed in nucleic acid and protein microarray technology. The new instrument is capable of the highly sensitive discernment of surface biochemical events taking place at molecular level such as nucleic acid hybridization and antibody-antigen interaction. The method involves measurement of changes in work function and surface potential instigated by such interactions. Being a label-free and non-contact technique, the structure, spatial configuration, local properties or function of the molecular system under study are not affected, nor perturbed by intercalating dyes, a strong electric field or ionizing beam. Subsequent to scanning, the microarray can be examined by other alternative approaches. Nucleic acids and proteins have been printed in microarray format on slides with a gold film in place using gold-sulphur interactive chemistry. Hybridization of nucleic acids for complementary and mismatched configurations shows consistent and reproducible values of work function. Differentiation of single internal mismatches is demonstrated. Protein concentration and formation of antibody-antigen pairs can be visualized and examined with high sensitivity and good inter-spot reproducibility.  相似文献   

19.
20.
Here we report a simple and effective procedure enabling the fluorescent detection of nucleic acids following the rapid, high-resolution separation using ion pair reverse phase chromatography. This approach uses postcolumn nucleic acid intercalation of fluorescent dyes with subsequent fluorescent detection, demonstrating more than a 1000-fold increase in sensitivity in the detection of nucleic acids when compared with traditional UV detection. Moreover, a wide range of intercalating dyes can be incorporated, including those known to disrupt the structure of the nucleic acids, thereby enabling the sensitive detection of DNA and RNA with no adverse effect on resolution of the nucleic acids during ion pair reverse phase chromatography. In addition, such approaches allow one to readily distinguish single-stranded DNA from double-stranded DNA following their separation using ion pair reverse phase high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号