首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymic method for the quantitative determination of reduced glutathione   总被引:2,自引:0,他引:2  
A new specific and sensitive assay method for reduced glutathione has been developed. It is based on the reaction HCHO + NAD+ + H2O → HCOOH + NADH + H+, catalyzed by formaldehyde dehydrogenase (formaldehyde: NAD oxidoreductase, EC.1.2.1.1) in the presence of reduced glutathione. Oxidized glutathione and other thiols do not interfere in this reaction. A purification procedure for formaldehyde dehydrogenase from beef liver is presented.The influence of cysteine and some other thiols, leucine, ascorbate, lactate, pyruvate and four acids generally used for deproteinization is reported. The results obtained by this method from human blood and rat tissues are compared with those obtained by Ellman's method.  相似文献   

2.
Evaluation of the kinetic parameters of the various reactions involved in the determination of glutathione provided the rationale for a modification of the frequently used assay (F. Tietze, 1969, Anal. Biochem. 27, 502-522) whereby the enzymatic reaction is no longer rate limiting. At pH 6.0, the nonenzymatic thiol interchange reaction of reduced glutathione (GSH) with Ellman's reagent becomes rate limiting, and inhibition of glutathione reductase up to 50% has no influence on the accuracy of the determination. The lower level of sensitivity is 10(-10) mol glutathione with a linear response up to 5 X 10(-9) mol. For determination of glutathione disulfide, GSH is alkylated by N-ethylmaleimide (NEM), and excess NEM is removed by extraction with ethyl acetate. Since the glutathione adduct is not stable, extracted samples are kept deep-frozen prior to analysis. Using this precaution, less than 0.05% of GSSG was determined in GSH-containing samples which had been previously freed from GSSG.  相似文献   

3.
A sensitive and specific assay for glutathione using a recycling reaction followed by spectrophotometric detection in a flow-injection analysis system is presented. The proposed method provides specific amplification of the response to glutathione by combined use of the enzyme GSSG reductase and the chromogenic reagent 5,5'-dithiobis(2-nitrobenzoic acid). Both oxidized (GSSG) and reduced (GSH) glutathione are detected, so that GSSG must be determined separately after alkylation of the GSH with N-ethylmaleimide. The sensitivity is controlled by the number of times the cycle occurs and therefore by the residence time of the sample in the reactor. This time depends on the reactor length and the flow rate. The influence of residence time, temperature, and enzyme concentration on the response has been studied and the optimum reaction conditions have been selected. The sample throughput is as high as 30 h(-1) and the detection limit is 1 pmol GSH at a signal-to-noise ratio of 3. The method has been evaluated by the quantification of GSH and GSSG in isolated hepatocytes. A high correlation between the new flow-injection analysis method and the original spectrophotometric batch assay has been found (slope = 1.039, intercept = 0.6, n = 216, r = 0.977). The main advantages of the proposed method are high sample throughout, high sensitivity, and good reproducibility.  相似文献   

4.
Glutathione is an important tripeptide involved in a variety of cellular processes. Thus, precise knowledge of its levels is essential. Glutathione exists in two free forms-reduced and oxidized-and a number of methods exist to measure its levels. The aim of our work was to optimize a spectrofluorometric assay for reduced glutathione based on the reaction between glutathione and o-phthalaldehyde. We found that a change of excitation wavelength to 340 nm and modification of pH to 6.0 enhance sensitivity and specificity of the method (intraassay coefficient of variation CV < 3%, interassay CV = 5.1%, recovery = 98-102%, linearity = 0-1000 μM GSH, calibration R2 = 1.00). We also anticipated possible effect of various amino acids on the fluorescence signal, but no interference was found. We compared the optimized fluorometric method with a popular enzymatic recycling glutathione assay and found very strong correlation of results (r = 0.99, n = 45). We introduce here an optimized fluorometric method possessing sufficient sensitivity and specificity that is comparable to the enzymatic glutathione assay. Because the fluorometric assay procedure is faster and lower in cost, it could be ideal for routine analysis of reduced glutathione levels in a large number of samples.  相似文献   

5.
Because of the importance of glutathione (GSH) and glutathione disulfide (GSSG) in cellular signal transduction, gene regulation, redox regulation, and biochemical homeostasis, accurate determination of cellular glutathione levels is critical. Several procedures have been developed, but many suffer from overestimating GSSG or from cellular substances interfering or competing with GSH determination. Assays based on HPLC, with enzymatic reduction of GSSG by glutathione reductase and NADPH, appear to be valid but are limited in sample throughput and availability of equipment. The fluorescence probe o-phthalaldehyde (OPA, phthalic dicarboxaldehyde) reacts with GSH and has a high quantum yield, yet its use has been limited due to unidentified interfering and fluorescence-quenching substances in liver. This paper describes assay conditions under which these limitations are avoided. By using a phosphate-buffered assay at lower pH, interference with nonspecific reactants is minimal. Since enzymatic reduction is not possible due to the reaction of OPA with NAD(P)H and other stronger reducing agents, leading to an overestimation of GSSG levels, dithionite was used to reduce GSSG. High sample throughput combined with sensitive (20-pmol limit of detection) and accurate determination of GSH and GSSG using OPA is achievable with any monochromatographic spectrofluorometer. Sample preparation and storage conditions are described that return the same levels of GSH and GSSG for at least 4 weeks.  相似文献   

6.
7.
8.
A new method is described for the quantification of oxidized glutathione (GSSG) in tissues by enzymatic recycling coupled to NADPH bioluminescent detection. Tissue samples are treated with metaphosphoric acid. In a first step, after derivatization of GSH with 4-chloro-7-trifluoromethyl-1-methylquinolinium (CFQ), GSSG is recycled in the presence of dithionitrobenzoic acid (DTNB) and NADPH by glutathione reductase. In a second step, the GSSG-dependent NADPH consumption is measured by luminescence with NADPH:FMN oxidoreductase-bacterial luciferase. The coefficient of variation for GSSG measurements on repeated assays (n = 5) is 2 and 3% for standards and tissue samples, respectively. The sensitivity of this method is at the picomole level and is convenient for determination of GSSG physiological concentrations in tissues: GSSG levels measured in rat liver and kidney ranged from 76 to 215 and 52 to 170 nmol/g wet weight, respectively.  相似文献   

9.
The blood reduced glutathione (GSH)/GSH disulfide (GSSG) ratio is an index of the oxidant/antioxidant balance of the whole body. Nevertheless, data indicating GSH and GSSG physiological levels are still widely divergent, especially those on GSSG, probably due to its low concentration. Standardization in methodological protocols and sample manipulation could help to minimize these discrepancies. Therefore, we have investigated how plasma reduced GSH, which is rapidly oxidized after blood withdrawal, could alter the blood GSSG measurement if the sample is not suitably processed. We have observed that an increase in plasma GSH concentration, due to red blood cell hemolysis, is responsible for a significant overestimation of blood GSSG level. Our results show that, before performing blood GSSG determination, thiols have to be rapidly blocked, to avoid possible pitfalls in GSSG measurement, in particular when hemolysis is present.  相似文献   

10.
11.
12.
13.
14.
A fluorometric method for the enzymatic determination of cholesterol content has been developed using a novel fluorogenic H2O2 probe, Amplex Red. This assay is performed in a 96-well microplate, and it is a one-step method amenable to automated procedures. Using commercially available cholesterol, our assay allows detection of 5 pmol (2 ng) cholesterol per well, which is 100-fold more sensitive than published fluorometric and colorimetric methods. When applied to the measurement of cholesterol levels in serum and food samples, the Amplex Red-based method has been found more attractive since the oxidation product of the Amplex Red method has superior long wavelength spectra which are less susceptible to interference from the biological compounds.  相似文献   

15.
16.
Inhibition of glutathione disulfide reductase by glutathione   总被引:2,自引:0,他引:2  
Rat-liver glutathione disulfide reductase is significantly inhibited by physiological concentrations of the product, glutathione. GSH is a noncompetitive inhibitor against GSSG and an uncompetitive inhibitor against NADPH at saturating concentrations of the fixed substrate. In both cases, the inhibition by GSH is parabolic, consistent with the requirement for 2 eq. of GSH in the reverse reaction. The inhibition of GSSG reduction by physiological levels of the product, GSH, would result in a significantly more oxidizing intracellular environment than would be realized in the absence of inhibition. Considering inhibition by the high intracellular concentration of GSH, the steady-state concentration of GSSG required to maintain a basal glutathione peroxidase flux of 300 nmol/min/g in rat liver is estimated at 8-9 microM, about 1000-fold higher than the concentration of GSSG predicted from the equilibrium constant for glutathione reductase. The kinetic properties of glutathione reductase also provide a rationale for the increased glutathione (GSSG) efflux observed when cells are exposed to oxidative stress. The resulting decrease in intracellular GSH relieves the noncompetitive inhibition of glutathione reductase and results in an increased capacity (Vmax) and decreased Km for GSSG.  相似文献   

17.
18.
19.
An enzymatic assay was developed for the quantitative determination of the amino acid taurine by following spectrophotometrically the oxidation of NADH using tauropine dehydrogenase. This enzyme was sufficiently purified from the shell adductor muscle of the ormer, Haliotis lamellosa, by a single-step isolation procedure on an ion-exchange column. The enzyme is highly specific for taurine. The quantitation of taurine is possible in the range of 1.6 to 100 nmol/ml; the assay time takes about 90 min. The method was successfully applied to the estimation of taurine in neutralized perchloric acid extracts of different muscles of various molluscs without further treatment. Correct quantitation of taurine is possible even in the presence of a 10-fold higher concentration of L-alanine.  相似文献   

20.
An electrochemical method was elaborated for the continuous determination of enzymatic hydrolysis of acetylcholine. In the electrochemical system applied the aqueous solution of the enzyme is separated from the aqueous solutions of substrates by a semipermeable membrane. In this way cholinesterase is used many times for reactions. Changes in the concentration of hydrogen ions were determined with molybdenum electrodes, one of which was used as an indicator and immersed in enzyme solution and the other served for comparison and was immersed in the solution of acetylcholine flowing to the measuring system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号