首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The major problem of using somatic mutations as markers of malignancy is that the clinical samples are frequently containing a trace amounts of mutant allele in a large excess of wild-type DNA. Most methods developed thus far for the purpose of tickling this difficult problem require multiple procedural steps that are laborious. We report herein the development of a rapid and simple protocol for detecting a trace amounts of mutant K-ras in a single tube, one-step format. In a capillary PCR, a 17mer peptide nucleic acid (PNA) complementary to the wild-type sequence and spanning codons 12 and 13 of the K-ras oncogene was used to clamp-PCR for wild-type, but not mutant alleles. The designated PNA was labeled with a fluorescent dye for use as a sensor probe, which differentiated all 12 possible mutations from the wild-type by a melting temperature (Tm) shift in a range of 9 to 16°C. An extension temperature of 60°C and an opposite primer 97 nt away from the PNA were required to obtain full suppression of wild-type PCR. After optimization, the reaction detected mutant templates in a ratio of 1:10000 wild-type alleles. Using this newly devised protocol, we have been able to detect 19 mutants in a group of 24 serum samples obtained from patients with pancreatic cancer. Taken together, our data suggest that this newly devised protocol can serve as an useful tool for cancer screening as well as in the detection of rare mutation in many diseases.  相似文献   

2.
The technique of allele-specific PCR (AS-PCR) enables the detection of a small number of mutant alleles in a large number of wild-type (WT) alleles. We used the AS-PCR technique and Southern blotting, using a nonradioactive labeled probe to analyze the formation of point mutations in the tumor-suppressor gene p53 of primary keratinocytes after UV-B irradiation. These permanent mutations resulting from CC dimers occur at distinct "hot-spots", one of which is affected in the human keratinocyte cell line HaCaT. This enabled us to establish the method with a defined positive control template, which also allowed semiquantitative determination of the mutation frequency. This, and the determination of the detection limit, was done with the use of serial dilutions of WT genomic DNA from primary keratinocytes with mutant genomic HaCaT DNA in the AS-PCR assay.  相似文献   

3.
Recently much attention has been focused on single nucleotide polymorphisms (SNPs) within fundamentally important genes, such as those involved in metabolism, cell growth regulation, and other disease-associated genes. Methodologies for discriminating different alleles need to be specific (robust detection of an altered sequence in the presence of wild-type DNA) and preferably, amenable to high throughput screening. We have combined the fluorogenic 5' nuclease polymerase chain reaction (TaqMan) and the mismatch amplification mutation assay (MAMA) to form a novel assay, TaqMAMA, that can quickly and specifically detect single base changes in genomic DNA. TaqMan chemistry utilizes fluorescence detection during PCR to precisely measure the starting template concentration, while the MAMA assay exploits mismatched bases between the PCR primers and the wild-type template to selectively amplify specific mutant or polymorphic sequences. By combining these assays, the amplification of the mutant DNA can be readily detected by fluorescence in a single PCR reaction in 2 hours. Using the human TK6 cell line and specific HPRT-mutant clones as a model system, we have optimized the TaqMAMA technique to discriminate between mutant and wild-type DNA. Here we demonstrate that appropriately designed MAMA primer pairs preferentially amplify mutant genomic DNA even in the presence of a 1,000-fold excess of wild-type DNA. The ability to selectively amplify DNAs with single nucleotide changes, or the specific amplification of a low copy number mutant DNA in a 1,000-fold excess of wild-type DNA, is certain to be a valuable technique for applications such as allelic discrimination, detection of single nucleotide polymorphisms or gene isoforms, and for assessing hotspot mutations in tumor-associated genes from biopsies contaminated with normal tissue.  相似文献   

4.
Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid—locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.  相似文献   

5.
EGFR exon 19 deletion is an important indicator for tyrosine kinase inhibitor treatment in non-small cell lung cancer. However, detection of exon 19 deletions faces a challenge: there are more than 30 types of mutations reported at the hotspot. Moreover, considering the application in body fluid samples, assays with high sensitivity and specificity are necessary for the detection of rare mutant alleles. Here, we describe a single tube reaction which could detect at least 29 types of exon 19 deletions with only an unlabeled peptide nucleic acid (PNA) clamp and a pair of DNA probes. The PNA clamp was used to inhibit amplification of wild-type templates; and the DNA probes were used to generate melting peaks for multiple types of mutations. Under optimal condition, the assay was able to detect as low as 0.01% mutant DNA in wild-type background, and had a limit of detection of 10 pg genomic DNA. Feasibility of the assay was tested in body fluid samples from lung cancer patients. The assay detected 100% and 60% of deletions in pleural effusions and plasma, respectively. We believe the present assay can be used in the clinical laboratories and has potential to be adapted for a microfluidic device.  相似文献   

6.
Mutation detection using Surveyor nuclease   总被引:2,自引:0,他引:2  
We have developed a simple and flexible mutation detection technology for the discovery and mapping of both known and unknown mutations. This technology is based on a new mismatch-specific DNA endonuclease from celery, Surveyor nuclease, which is a member of the CEL nuclease family of plant DNA endonucleases. Surveyor nuclease cleaves with high specificity at the 3' side of any mismatch site in both DNA strands, including all base substitutions and insertion/deletions up to at least 12 nucleotides. Surveyor nuclease technology involves four steps: (i) PCR to amplify target DNA from both mutant and wild-type reference DNA; (ii) hybridization to form heteroduplexes between mutant and wild-type reference DNA; (iii) treatment of annealed DNA with Surveyor nuclease to cleave heteroduplexes; and (iv) analysis of digested DNA products using the detection/separation platform of choice. The technology is highly sensitive, detecting rare mutants present at as low as 1 in 32 copies. Unlabeled Surveyor nuclease digestion products can be analyzed using conventional gel electrophoresis or high-performance liquid chromatography (HPLC), while end labeled digestion products are suitable for analysis by automated gel or capillary electrophoresis. The entire protocol can be performed in less than a day and is suitable for automated and high-throughput procedures.  相似文献   

7.
DNA templated fluorogenic reactions have been used as a diagnostic tool for the sequence specific detection of nucleic acids; and it has been shown that the native chemical ligation between thioester- and 1,2-aminothiol-modified PNA probes is amongst the most selective DNA detection methods reported. We explored whether a DNA templated reaction can be interfaced with the polymerase chain reaction (PCR). This endeavor posed a significant challenge. The reactive groups involved must be sufficiently stable to tolerate the high temperature applied in the PCR process. Nevertheless, the ligation reaction must proceed very rapidly and sequence specifically within the short time available in the annealing and primer extension steps before denaturation is used after approx. 1 min to commence the next PCR cycle. This required a careful optimization of the ternary complex architecture as well as adjustments of probe length and probe reactivities. Our results point to the prime importance of the ligation architecture. We show that once suitable annealing sites have been identified less reactive probe sets may be preferable if sequence specificity is of major concern. The reactivity tuning enabled the development of an in-PCR ligation, which was used for the single nucleotide specific typing of the V600E (T1799A) point mutation in the human BRaf gene. Showcasing the efficiency and sequence specificity of native chemical PNA ligation, attomolar template proofed sufficient to trigger signal while a 1000-fold higher load of single mismatched template failed to induce appreciable signal.  相似文献   

8.
Although the analyses of HBV genomic DNA have traditionally been performed with commercial techniques, the high cost and long time consumed have hindered their applications in routinely diagnosis and prognosis of infection. We construct peptide nucleic acid (PNA) piezoelectric biosensor for real-time monitoring of hybridization of hepatitis B virus (HBV) genomic DNA. The PNA probe can combine to target DNA sequences more effectively and specifically than a DNA probe. The PNA probe was designed and immobilized on the surface of the biosensor to substitute the conventional DNA probe for direct detection of HBV genomic DNA without previous amplification by PCR. The hybridization assay was completed in 50 min. The detection limit was 8.6 pg/L and the clinical specificity was 94.44% compared with real time-PCR (RT-PCR). The PNA probe was able to distinguish sequences that differ only in one base. Detection sensitivity can be improved and detection time can be decreased by adding RecA protein-coated complementary ssDNA which complement to HBV gene regions. The QCM system we designed has the advantages of being rapid, label-free and highly sensitive and can be a useful supplement to commercial assay methods in clinical chemistry.  相似文献   

9.
Peptide nucleic acid (PNA) is an artificially synthesized polymer. PNA oligomers show greater specificity in binding to complementary DNAs. Using this PNA, fluorescence melting curve analysis (FMCA) for dual detection was established. Genomic DNA of Mycoplasma fermentans and Mycoplasma hyorhinis was used as a template DNA model. By using one PNA probe, M. fermentans and M. hyorhinis could be detected and distinguished simultaneously in a single tube. The developed PNA probe is a dual‐labeled probe with fluorescence and quencher dye. The PNA probe perfectly matches the M. fermentans 16s rRNA gene, with a melting temperature of 72°C. On the other hand, the developed PNA probe resulted in a mismatch with the 16s rRNA gene of M. hyorhinis, with a melting temperature of 44–45°C. The melting temperature of M. hyorhinis was 27–28°C lower than that of M. fermentans. Due to PNA's high specificity, this larger melting temperature gap is easy to create. FMCA using PNA offers an alternative method for specific DNA detection. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:730–735, 2015  相似文献   

10.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1alpha (HNF-1alpha) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3' complementarity to the specific mutation site and 5' complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1alpha with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

11.
Somatic mutations of the fibroblast growth factor receptor 3 (FGFR3) gene were detected by peptide nucleic acid (PNA)-mediated real-time PCR clamping. Mutation was detected in negative control containing only wild-type DNA due to a misincorporation of dNTPs to PNA binding sites when the amount of template DNA was decreased to 1 ng. Thus, the amount of template DNA was critical determinant of the assay sensitivity in PNA-mediated PCR clamping. Assay conditions were optimized to detect FGFR3 mutations in exons 7, 10, and 15, at a concentration of more than 1% mutated DNA using 50 ng of genomic DNA as the template. Mutations were detected in 12 of 13 (92.3%) tumor tissues and 11 of 13 (84.6%) urine samples from patients with superficial bladder cancer, while no mutations were detected in tissues and/or urine samples from patients with muscle-invasive bladder cancer or chronic cystitis.  相似文献   

12.
The enriched PCR widely used for detection of mutant K-RAS in either tumor tissues or circulating DNA was modified so that abundant wild-type K-RAS alleles are cleaved prior to PCR. We took advantage of an AluI recognition site located immediately upstream of the K-RAS codon 12. The site was reconstituted upon DNA denaturation followed by annealing with a 'stencil', a 16-bp synthetic oligonucleotide complementary to the wild-type sequence. As opposed to normal K-RAS, the mutant allele forms, upon annealing with the stencil, a mismatch at the codon 12 which lies within the AluI enzyme binding site and partially inhibits its activity. The mismatch also lowers the melting temperature of the stencil-mutant K-RAS double helix as compared to stencil-wild-type duplex, so that only the latter is double stranded and selectively digested by AluI at elevated temperatures. The proposed method of stencil-aided mutation analysis (SAMA) based on selective pre-PCR elimination of wild-type sequences can be highly advantageous for detection of mutant K-RAS due to: (i) an enhanced sensitivity because of reduced competition with a great excess of normal K-RAS, and (ii) a decrease in a number of false-positive results from Taq polymerase errors. Application of SAMA for generalized detection of DNA mutations is discussed.  相似文献   

13.
The TaqMan probes that have been long and effectively used in real-time polymerase chain reaction (PCR) may also be used in DNA melting analysis. We studied some factors affecting efficiency of the approach such as (i) number of asymmetric PCR cycles preceding DNA melting analysis, (ii) choice of fluorophores for the multiplex DNA melting analysis, and (iii) choice of sense or antisense TaqMan probes for optimal resolution of wild-type and mutant alleles. We also determined ΔTm (i.e., the temperature shift of a heteroduplex relative to the corresponding homoduplex) as a means of preliminary identification of mutation type. In experiments with serial dilution of mutant KRAS DNA with wild-type DNA, the limit of detection of mutant alleles was 1.5–3.0%. Using DNA from both tumor and formalin-fixed paraffin-embedded tissues, we demonstrated a high efficiency of TaqMan probes in mono- and multiplex mutation scanning of KRAS, NRAS (codons 12, 13, and 61), and BRAF (codon 600) genes. This cost-effective method, which can be applied to practically any mutation hot spot in the human genome, combines simplicity, ease of execution, and high sensitivity—all of the qualities required for clinical genotyping.  相似文献   

14.
Using electrochemical impedance spectroscopy (EIS) the sensitive and specific detection of the antibiotic resistance gene mecA has been demonstrated. The gene sequence was obtained from clinical Staphylococcus aureus isolates. Initially a mecA specific probe was selected from hybridisation tests with a 3' and 5' version of a previously published probe sequence. When immobilised on a gold electrode in PNA form it was possible to detect hybridisation of mecA PCR product electrochemically at concentrations as low as 10nM. By incorporating an undecane-thiol and 1.8 nm glycol spacer into the PNA probe it was possible to extend the limit of detection for mecA to 10 pM. Most published studies on EIS and nucleic acid detection report the use of short artificial DNA sequences or novel signal amplification schemes which improve sensitivity whereas this study reports the successful detection of long DNA fragments produced by PCR following extraction from clinical isolates. Finally, using screen printed electrodes the paper demonstrates hybridisation monitoring of mecA in an "on-line" assay format under ambient conditions which paves the way for rapid mecA detection in point of care scenarios.  相似文献   

15.
The ability of peptide nucleic acid (PNA) to open up duplex DNA in a highly sequence-specific manner makes it possible to detect short DNA sequences on the background of or within genomic DNA under non-denaturing conditions. To do so, chosen marker sites in double-stranded DNA are locally opened by a pair of PNA openers, thus transforming one strand within the target region (20-30 bp) into the single-stranded form. Onto this accessible DNA sequence a circular oligonucleotide probe is assembled, which serves as a template for rolling circle amplification (RCA). Both homogeneous and heterogeneous assay formats are investigated, as are different formats for fluorescence-based amplicon detection. Our recent data with immobilized analytes suggest that marker sequences in plasmid and bacterial chromosomal DNA can be successfully detected.  相似文献   

16.
A variety of techniques are currently available for detecting point mutations in DNA. These techniques are frequently not sensitive enough to be applied as quantitative assays in evaluation of relative occurrence of alleles in cases of polymorphism or when variations in allelic gene expression are being evaluated at the level of RNA. We report here the establishment of an iterative gap ligation (IGL) assay that is both quantitative and sensitive. The design of the assay is such that ligation of an upstream to a downstream primer across a single nucleotide gap will only occur if the gap is filled with a deoxynucleotide complementary to the wild-type or mutant sequence. Under conditions in which excess upstream primer saturates the template concurrently with limiting amounts of downstream primer quantitative ligation is absolutely dependent on provision of the appropriate gap filling nucleotide. When gap ligation occurs in a single incubation, or cycle, the amount of ligated product is a linear function of the relative amount of mutant sequence, with a sensitivity and detection limit of approximately 3% over a range of relative concentrations of 0-100%. When the reaction occurs over multiple cycles, or iterations, gap ligation becomes a non-linear function such that small changes in the relative proportions of alleles produce a disproportionately large amount of ligation. As a consequence, the sensitivity and limits of detection of the assay improve to 0.2% after only 8 cycles. The development of this assay provides a unique means of quantifying allelic polymorphisms in both DNA and RNA (after initial amplification by PCR or RT-PCR) and should be applicable to any experimental settings in which nucleic acids from tissues or mixed populations of cells are being evaluated.  相似文献   

17.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1α (HNF-1α) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3′ complementarity to the specific mutation site and 5′ complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1α with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

18.
Several diseases are characterized by the presence of point mutations, which are amenable to molecular detection using a number of methods such as PCR. However, certain mutations are particularly difficult to detect due to factors such as low abundance and the presence of special (e.g., oligonucleotide repeat) sequences. The mutation 7A in the oligoA sequence of exon 7 of the gene encoding the La autoantigen is difficult to detect at the DNA level, and even at the RNA level, due to both its estimated low abundance and its differentiation from the wild-type 8A sequence. This article describes a technique in which amplification of the excess wild-type 8A La sequence is suppressed by a peptide nucleic acid (PNA) during a nested PCR step. Detection of the amplified 7A mutant form was then performed by simple electrophoresis following a final primer extension step with an infrared dye-labeled primer. This technique allowed us to detect the mutation in 3 of 7 individuals harboring serum immunoglobulin G (IgG) antibodies reactive with a neo-B cell epitope in the 7A mutant protein product. We propose that this method is a viable screening test for mutations in regions containing simple polynucleotide repeats.  相似文献   

19.
The high degree of intra-tumor heterogeneity has meant that it is important to develop sensitive and selective assays to detect low-abundance KRAS mutations in metastatic colorectal carcinoma (mCRC) patients. As a major potential source of tumor DNA in the aforementioned genotyping assays, it was necessary to conduct an analysis on both the quality and quantity of DNA extracted from formalin-fixed paraffin-embedded (FFPE). Therefore, four commercial FFPE DNA extraction kits were initially compared with respect to their ability to facilitate extraction of amplifiable DNA. The results showed that TrimGen kits showed the greatest performance in relation to the quality and quantity of extracted FFPE DNA solutions. Using DNA extracted by TrimGen kits as a template for tumor genotyping, a real-time wild-type blocking PCR (WTB-PCR) assay was subsequently developed to detect the aforementioned KRAS mutations in mCRC patients. The results showed that WTB-PCR facilitated the detection of mutated alleles at a ratio of 1:10,000 (i.e. 0.01%) wild-type alleles. When the assay was subsequently used to test 49 mCRC patients, the results showed that the mutation detection levels of the WTB-PCR assay (61.8%; 30/49) were significantly higher than that of traditional PCR (38.8%; 19/49). Following the use of the real-time WTB-PCR assay, the ΔC q method was used to quantitatively analyze the mutation levels associated with KRAS in each FFPE sample. The results showed that the mutant levels ranged from 53.74 to 0.12% in the patients analyzed. In conclusion, the current real-time WTB-PCR is a rapid, simple, and low-cost method that permits the detection of trace amounts of the mutated KRAS gene.  相似文献   

20.
Double-stranded DNA amplified by polymerase chain reaction (PCR) was detected by peptide nucleic acid (PNA) using a BIAcore 2000 biosensor based on surface plasmon resonance (SPR). PNA is an artificial oligo amide that is capable of forming highly stable complexes with complementary oligonucleotides. We succeeded in the direct detection of double-stranded DNA, amplified by PCR with high-sequence specificity. It was shown that the target DNA was available for detection over the range of 40-160 nM. Therefore, the detection limit was 7.5 pmol of the target DNA (143 bases, applied volume 30 microliters). Our DNA detection system, the combination of BIAcore and the probe PNA, could detect the target DNA with good reproducibility. In this report, we show that our system is a powerful tool for the diagnosis of pathologically significant DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号