首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes are involved in activation and detoxification of many potential carcinogens. Genetic polymorphisms in those enzymes have been found to influence the interindividual susceptibility to cancer. Some polymorphisms of those enzymes have been associated specifically with susceptibility to gastric cancer. We conducted a study in a Costa Rican population, where gastric cancer incidence and mortality rates are among the highest in the world. We investigated whether such variations affected the risk of developing gastric cancer. Subjects included 31 with gastric cancer, 58 controls with gastric injures others than cancer and 51 normal controls confirmed by X-rays (double-contrast) or endoscopic diagnostic. DNA from peripheral white blood cell was obtained from all subjects. Deletion of GSTT1 and GSTM1 was assessed by multiplex PCR and genotyping of CYP2E1 was performed using a PCR-based restriction fragment length polymorphism assay with the restriction enzyme PstI and the gene CYP1A1 using the restriction enzyme MspI The prevalence of CYP1A1 Msp1 polymorphism, GSTT1 and GSTM1 null genotype was similar in the three groups of individuals (p = 0.73, p = 0.88 y p = 0.89 respectively). Our findings suggest that the polymorphism CYP2E1 PstI could be associated with a reduced risk of having gastric cancer (OR = 0.09, IC95%:0.01 - 0.83).  相似文献   

2.
Carcinogenic and toxic molecules produce DNA adducts that contribute to the development of atherosclerosis. Genetic polymorphisms of xenobiotic-detoxified enzymes, which control the level of DNA adducts, may affect both enzymatic activity and individual susceptibility to coronary artery disease (CAD). In this study we investigated the effects of genetic polymorphisms of the CYP1A1*2C, GSTT1, and GSTM1 enzymes on CAD risk in a Turkish population. Genotypes were determined for 132 CAD patients and 151 healthy controls by the polymerase chain reaction/restriction fragment length polymorphism method. There were no significant differences between patients and controls in terms of CYP1A1, GSTT1, and GSTM1 genotypes. Analysis of the possible interactions between the genotypes, after adjustment for the risk factors, demonstrated that individuals carrying CYP1A1 variant GSTT1 null genotypes had an 8.907-fold increased CAD risk compared to their wild status (p<0.05). We suggest that genetic polymorphisms of xenobiotic-metabolizing enzymes could play an important role in CAD. Therefore, CYP1A1 and GSTM1 polymorphisms should be considered as important parameters for the prediction of CAD.  相似文献   

3.
Gene-environment interactions have been extensively studied in lung cancer. It is likely that several genetic polymorphisms cooperate in increasing the individual risk. Therefore, the study of gene-gene interactions might be important to identify high-susceptibility subgroups. GSEC is an initiative aimed at collecting available data sets on metabolic polymorphisms and the risks of cancer at several sites and performing pooled analyses of the original data. Authors of published papers have provided original data sets. The present paper refers to gene-gene interactions in lung cancer and considers three polymorphisms in three metabolic genes: CYP1A1, GSTM1 and GSTT1. The present analyses compare the gene-gene interactions of the CYP1A1*2A, GSTM1 and GSTT1 polymorphisms from studies on lung cancer conducted in Europe and the USA between 1991 and 2000. Only Caucasians have been included. The data set includes 1466 cases and 1488 controls. The only clear-cut association was found with CYP1A1*2A. This association remained unchanged after stratification by polymorphisms in other genes (with an odds ratio [OR] of approximately 2.5), except when interaction with GSTM1 was considered. When the OR for CYP1A1*2A was stratified according to the GSTM1 genotype, the OR was increased only among the subjects who had the null (homozygous deletion) GSTM1 genotype (OR=2.8, 95% CI=0.9-8.4). The odds ratio for the interactive term (CYP1A1*2A by GSTM1) in logistic regression was 2.7 (95% CI=0.5-15.3). An association between lung cancer and the homozygous CYP1A1*2A genotype is confirmed. An apparent and biologically plausible interaction is suggested between this genotype and GSTM1.  相似文献   

4.
Nie F  Chen Z  Cao C  Cen Y 《DNA and cell biology》2011,30(10):783-788
Glutathione S-transferases (GSTs) are a family of multifunctional enzymes that are involved in the metabolism of many xenobiotics, including a wide range of environmental carcinogens. The null genotypes GSTM1 and GSTT1 have been implicated in the development of carcinogenesis. We conducted a meta-analysis to examine the association of GSTM1 and GSTT1 homozygous deletion polymorphisms with melanoma risk. In total, 8 relevant studies were identified in searches of the PubMed and Embase databases: 8 investigated GSTM1 (1349 cases and 1560 controls) and 5 GSTT1 (977 cases and 1060 controls). Fixed- and random-effects models were used to assess the summary odds ratios (ORs). No significant association of the GSTM1 and GSTT1 polymorphisms or the GSTM1-GSTT1 interaction on the risk of melanoma was observed (for GSTM1: OR=1.09; 95% confidence interval, 0.94-1.27; and for GSTT1: OR=0.95; 95% confidence interval, 0.76-1.19). Similarly, no significant association was found in a subgroup analysis of hair color. These results indicate that the GSTM1 and GSTT1 polymorphisms may not be a risk factor for developing melanoma.  相似文献   

5.
The glutathione S-transferase (GSTs) are polymorphic supergene family of detoxification enzymes that are involved in the metabolism of numerous potential carcinogens. Several allelic variants of polymorphic GSTs show impaired enzyme activity and are suspected to increase the susceptibility to various cancers. To find out the association of GST variants with risk of gallbladder cancer, the distribution of polymorphisms in the GST family of genes (GSTT1, GSTM1, GSTP1, and GSTM3) were studied in 106 cancer patients and 201 healthy controls. Genotypes were analysed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP). The frequencies of GSTM1 null and GSTM3*BB genotypes did not differ between patients and controls. The overall frequency of GSTT1 null was lower in cases as compared with controls (p=0.003, Odds ratio (OR) = 0.2, 95% confidence interval (CI), 0.1-0.6). After sex stratification, the GSTT1 null frequency was reduced only in female patients (p=0.008, OR = 0.2, 95% CI = 0.1-0.6). However, the GSTP1, ile/val genotype and the val allele were significantly higher in cases than controls (p=0.013, OR = 1.9, 95% CI = 1.1-3.1; p=0.027, OR = 1.5, 95% CI = 1.0-2.1), respectively. To study gene-gene interactions, a combined risk of gallbladder cancer due to ile/val or val/val were calculated in combination with null alleles of GSTM1 and GSTT1 or the *B allele of GSTM3, but there was no enhancement of risk. Gallstones were present in 57.5% of patients with gallbladder cancer, but there were no significant differences between allelic/genotype frequencies of the studied GST genes polymorphisms between patients with or without gallstones. To best of our knowledge, this is the first paper showing ile/val genotypes and val allele of GSTP1 to be associated with higher risk of gallbladder cancer.  相似文献   

6.
Abstract

The glutathione S-transferase (GSTs) are polymorphic supergene family of detoxification enzymes that are involved in the metabolism of numerous potential carcinogens. Several allelic variants of polymorphic GSTs show impaired enzyme activity and are suspected to increase the susceptibility to various cancers. To find out the association of GST variants with risk of gallbladder cancer, the distribution of polymorphisms in the GST family of genes (GSTT1, GSTM1, GSTP1, and GSTM3) were studied in 106 cancer patients and 201 healthy controls. Genotypes were analysed by polymerase chain reaction (PCR) and PCR-restriction fragment length polymorphism (RFLP). The frequencies of GSTM1 null and GSTM3*BB genotypes did not differ between patients and controls. The overall frequency of GSTT1 null was lower in cases as compared with controls (p=0.003, Odds ratio (OR)?=?0.2, 95% confidence interval (CI), 0.1–0.6). After sex stratification, the GSTT1 null frequency was reduced only in female patients (p=0.008, OR?=?0.2, 95% CI?=?0.1–0.6). However, the GSTP1, ile/val genotype and the val allele were significantly higher in cases than controls (p=0.013, OR?=?1.9, 95% CI?=?1.1–3.1; p=0.027, OR?=?1.5, 95% CI?=?1.0–2.1), respectively. To study gene–gene interactions, a combined risk of gallbladder cancer due to ile/val or val/val were calculated in combination with null alleles of GSTM1 and GSTT1 or the *B allele of GSTM3, but there was no enhancement of risk. Gallstones were present in 57.5% of patients with gallbladder cancer, but there were no significant differences between allelic/genotype frequencies of the studied GST genes polymorphisms between patients with or without gallstones. To best of our knowledge, this is the first paper showing ile/val genotypes and val allele of GSTP1 to be associated with higher risk of gallbladder cancer.  相似文献   

7.
Glutathione S-transferases (GSTs) are a superfamily of detoxificant enzymes. Pharmacogenomic studies have revealed interethnic differences in GST allelic frequencies. This study is focused on GSTT1 (gene deletion, rs17850155, rs2234953, and rs11550605) and GSTM1 (gene deletion) gene frequency distributions in two population samples of Europe origin (Italy, n = 120; Spain, n = 94) and two population samples of Africa origin (Cameroon, n = 126; Ethiopia, n = 153). Detection of GSTT1 and GSTM1 null genotypes was performed by multiplex PCR analysis, while the other GSTT1 gene polymorphisms were detected using allele specific PCR and sequencing. GSTT1 and GSTM1 null frequencies in the samples analyzed fit with the variability range observed in European and African populations, respectively. The SNP analysis in GSTT1 gene did not highlight any nucleotide substitution in 493 individuals analyzed. The comparisons among GSTM1 and GSTT1 null phenotype frequencies in worldwide populations show different patterns between Asians, Africans, and Europeans. Important insights into the effects of GSTM1 and GSTT1 gene deletions on the pathogenesis of human diseases have been hypothesized. Detailed studies on the geography of GST variants could therefore increase knowledge about the relationship between ethnicity and the prevalence of certain diseases.  相似文献   

8.
Endogenous DNA damage levels were analyzed in relation to polymorphisms in genes encoding phase I detoxifying enzyme—CYP1A1, phase II detoxifying enzymes—GSTM1, GSTT1, GSTP1 and enzyme involved in nucleotide excision repair-XPD. The study group consisted of 220 healthy non-smoking volunteers; 90 men and 130 woman, 25–60 years old (44 ± 10 years). The level of DNA damage (% DNA in tail) was evaluated by alkaline comet assay. The genetic variants were determined by restriction fragment length polymorphism PCR. The highest level of DNA damage (6.7%) was found in carriers of both: AA variant of XPD gene and M1 null variant of GSTM1 gene. The lowest level of DNA breaks (3.7%) was associated with the genotype GSTP1-AA/GSTM1 (+).  相似文献   

9.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

10.
Susceptibility to DNA damage varies among individuals and sensitivity to bleomycin (BLM) may reflect the inter-individual differences. BLM sensitivity in part may be explained by inherited differences in DNA repair genes. We investigated the association between genetic polymorphisms in the GSTT1, GSTM1, XPD, XRCC1 and XRCC3 genes and the levels of spontaneous and BLM-induced DNA damage in peripheral blood lymphocytes from 200 healthy, unexposed individuals. The investigation of BLM sensitivity on cancer- or disease-free subjects and not occupationally exposed to known mutagen represents the strengths of the present study, as the detection of genetic damage is not biased by any disease- and occupational-related factor. The micronucleus (MN) assay was used to detect the spontaneous and BLM-induced genetic damage whereas, genotype analysis was carried out using methods based on polymerase chain reaction. Poisson regression analysis showed that subject's age, gender and smoking status had no effect on the spontaneous and BLM-induced MN frequencies. Genotype analysis revealed a clear association between GSTT1-null and XPD polymorphisms and both spontaneous and BLM-induced MN frequencies, whereas the effect of the XRCC1 polymorphism was marginally significant only with regard to spontaneous MN frequency. Genotype analysis did not reveal a clear association between the other studied SNPs (GSTM1 and XRCC3) and MN frequencies. Poisson regression analysis revealed no association between the score of protective alleles and the frequency of spontaneous MN. However, an increased number of protective alleles was significantly associated with a lower frequency of BLM-induced MN (P=0.0003). This finding highlights the genetic basis for BLM sensitivity, which could be a valid and useful surrogate for identifying genotypes that might increase susceptibility in population exposed to carcinogens. Further investigations in a large sample size and including more SNPs, reflecting the complexity of DNA repair machinery, might lead to the identification of a genetic profile responsible for the susceptibility to genotoxicants, with a far-reaching long-term impact on primary prevention and early detection of disease associated genes.  相似文献   

11.
Coronary artery disease (CAD) was the second leading cause of death during the last 3 years in Taiwan. Smooth muscle cells, monocytes/macrophages, and endothelial cells produce monocyte chemoattractant protein-1 (MCP-1) within atherosclerotic plaques following binding to the chemokine receptor-2 (CCR-2). Previous studies have well-documented the association between MCP-1 expression and susceptibility to, or clinicopathological features, of CAD. This study investigated the relationships between MCP-1-2518A/G and CCR-2-V64I genetic polymorphisms and CAD in the Taiwanese population. A total of 608 subjects, including 392 non-CAD controls and 216 patients with CAD, were recruited and subjected to polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to evaluate the effects of these two polymorphic variants on CAD. Results indicated a significant association between MCP-1 -2548 gene polymorphism and susceptibility to CAD. GG genotypes (OR = 1.629; 95 % CI = 1.003-2.644), or individuals with at least one G allele (OR = 1.511; 95 % CI = 1.006-2.270), had a higher risk of CAD as compared with AA genotypes. Results also revealed that subjects with at least one A allele of the V64I CCR2 gene polymorphism had significantly increased risk of CAD. G allele in MCP-1-2518 might contribute to higher prevalence of atrial fibrillation in CAD patients (OR = 4.254; p < 0.05). In conclusion, MCP-1-2518G and CCR-2 64I gene polymorphisms represent important factors in determining susceptibility to CAD, and the contribution of MCP-1-2518G could be through effects on atrial fibrillation in CAD patients.  相似文献   

12.
The glutathione S-transferase (GST) family of enzymes has a vital role in phase II of biotransformation of environmental carcinogens, pollutants, drugs and other xenobiotics. GSTs are polymorphic, with the type and frequency of polymorphism being ethnic dependent. Polymorphisms in GST genes have been shown to be associated with susceptibility to disease and disease outcome. We determined the frequencies of GSTM1, GSTT1 and GSTP1 polymorphisms in 591 volunteers who had been residents of Rio de Janeiro for at least six months. Blood was collected and DNA extracted by proteinase K/SDS digestion. Information about social habits and health problems was also recorded. GSTM1 and GSTT1 polymorphisms were analyzed by a PCR-Multiplex procedure, whereas GSTP1 polymorphism was analyzed by PCR-RFLP. We found that 42.1% (48.9% of whites and 34.2% of non-whites) of the individuals had the GSTM1 null genotype, whereas 25.4% (25.1% of whites and 25.7% of non-whites) had the GSTT1 null genotype. The genotypic distribution of GSTP1 was 49.7% I/I, 38.1% I/V, and 12.2% V/V, whereas the allelic frequencies were 0.69 for the Ile allele, and 0.31 for the Val allele. The frequencies of GST polymorphisms in this Brazilian population were found to be different from those observed in other populations, particularly of other South American countries.  相似文献   

13.
GSTM1, T1 and P1 are important enzymes of glutathione S-transferases (GSTs), involved in the metabolism of many endogenous and exogenous compounds. Individual genetic variation in these metabolizing enzymes may influence the metabolism of their substrates. The present study was designed to determine the genotoxic effects using DNA damage and its association with GSTM1, GSTT1, and GSTP1 (Ile105Val) genetic polymorphisms in workers occupationally exposed to organophosphate pesticides (OPs). We examined 230 subjects including 115 workers occupationally exposed to OPs and an equal number of normal healthy controls. The DNA damage was evaluated using the alkaline comet assay and genotyping was done using individual PCR or PCR-RFLP. Significantly higher DNA tail moment (TM) was observed in workers as compared to control subjects (14.41 ± 2.25 vs. 6.36 ± 1.41 tail % DNA, p<0.001). The results revealed significantly higher DNA TM in workers with GSTM1 null genotype than those with GSTM1 positive (15.18 vs. 14.15 tail % DNA, p=0.03). A significantly higher DNA TM was also observed in workers with homozygous Ile-Ile GSTP1 genotype than heterozygous (Ile-Val) and mutant (Val-Val) GSTP1 genotype (p=0.02). In conclusion, the results show that null deletion of GSTM1 and homozygote wild GSTP1 genotype could be related to inter-individual differences in DNA damage arises from the gene-environment interactions in workers occupationally exposed to OPs.  相似文献   

14.
The aim of this study was to use DNA adducts levels, detected by 32P-postlabelling, as a biomarker to assess human exposure to polycyclic aromatic hydrocarbons (PAHs) from a coke oven plant and explore the possible association between CYP1A1 MspI, GSTP1, GSTM1 and GSTT1 genotypes, and smoking status on bulky DNA adduct formation. A large amount of inter-individual variation in adduct level was observed among workers with the same job and the same smoking habits. No significant differences were observed in DNA adduct levels between the coke oven workers and control group. Smokers in the control group had significantly higher DNA adducts than the non-smokers in the same group (35.13+/-21.11 versus 11.18+/-8.00, per 10(8) nucleotides, P=0.003). In this group, the correlation between the level of DNA adducts and the cigarettes smoked was strongly significant (r=0.70, P<0.0005), but no correlation was found among the coke oven workers. Among non-smokers there was a significant difference between the control group and the coke oven workers (11.18+/-8.00 versus 24.62+/-15.20, per 10(8) nucleotides, P=0.03). These results suggests that tobacco smoke could behave as a confounding factor for evaluation of DNA adducts arising from occupational exposure. The levels of DNA adducts in smokers not occupationally exposed to PAHs is dependent on the polymorphisms CYP1A1 MspI in the 3' non-coding region (49.04+/-22.18 versus 25.85+/-15.87, per 10(8) nucleotides, P<0.05), but no effect was observed for the GST genotypes studied.  相似文献   

15.
Polymorphisms at the TP53, cytochrome P‐450 (CYP), and glutathione S‐transferase (GST) genes are related to cancer susceptibility and present high diversity in allele frequencies among ethnic groups. This study concerns the CYP2E1, GSTM1, and GSTT1 polymorphisms in seven Amerindian populations (Xavante, Guarani, Aché, Wai Wai, Zoró, Surui, and Gavião). Polymorphic sites at CYP1A1 and TP53 were also studied in the Aché and Guarani tribes and compared with previous results about these systems already obtained in the other populations. The CYP2E1*5B haplotype showed, respectively, the highest and the lowest frequencies already observed in human groups. High frequencies of CYP1A1*2A and CYP1A1*2C alleles and mostly low values of GSTM1*0/*0 and GSTT1*0/*0 genotypes were observed. These data may be interpreted as being due to genetic drift or selection for these high‐frequency CYP1A1 alleles and against GST null genotypes during America's colonization. Intrapopulation diversity varied from 0.19 (Guarani) to 0.38 (Surui), and 90% of the total diversity was due to the variability within populations. The relationships between these Amerindians and with other ethnic groups were evaluated based on DA distances and the neighbor‐joining method. Low correlation was observed between genetic relationships and geographic distances or linguistic groups. In the TP53 comparison with other ethnic groups, Amerindians clustered together and then joined Chinese populations. The cluster analysis seems to indicate that the Aché tribe might descend from a Gê group that could have first colonized that Paraguayan region, but had also assimilated some amount of the Guarani gene pool, maybe through intertribal admixture. Am J Phys Anthropol 119:249–256, 2002. © 2002 Wiley‐Liss, Inc.  相似文献   

16.
Oxidative damage is thought to play a pivotal role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Glutathione-S-transferases (GSTs) are involved in cell protection against oxidative stress. We examined whether GSTM1, GSTT1, and GSTP1 polymorphisms are associated with NAFLD in a sample of the Iranian population. The current case-control study included 83 patients with NAFLD and 93 healthy subjects. The GSTM1 and GSTT1 polymorphisms were analyzed by multiplex polymerase chain reaction (PCR). The GSTP1 polymorphism was detected by tetra amplification refractory mutation system-PCR assay. The GSTM1-null genotype was significantly associated with the development of NAFLD (odds ratios [OR]=2.171, 95% confidence intervals [CI]=1.188-3.970, p=0.015). The GSTP1 Val allele was shown to be a risk factor for NAFLD (OR=1.739, 95% CI=1.089-2.777, p=0.024). The GSTT1 polymorphism was not significantly different between control and patient groups (p=0.221). This study showed that GSTM1 and GSTP1, but not GSTT1, genetic polymorphisms are associated with NAFLD in a sample of the Iranian population, and may be used to determine the risk of development of NAFLD.  相似文献   

17.
This study describes the distribution of GSTT1 and GSTM1 polymorphisms in a normal population of central Poland. A homozygous inherited deletion of either gene leads to absence of enzyme activity in affected individuals, and those lacking more than one detoxifying gene are at the highest risk for diseases caused by environmental factors. The prevalence of the "null" genotype of the GSTM1 and GSTT1 genes was determined by using a multiplex polymerase chain reaction methodology in a group of 233 healthy individuals. We found the following frequencies of individuals with mutated alleles: 47.6% were homozygously deficient for GSTM1 (51.1% males, 42.4% females) and 16.3% for GSTT1 (17.7% males, 15.2% females). The combined analyses GSTM1/GSTT1 revealed the following genotypes: +/+, 44.2% (42.6% males, 46.7% females); "null"/+, 39.1% (39.7% males, 38.0% females); +/"null," 8.6% (7.1% males, 10.9% females); "null"/"null," 8.1% (10.6% males, 4.4% females). Of interest is the small number of women lacking both genes. Significant differences occurred between men and women in some age groups, which could suggest that sex differences in susceptibility to diseases may be caused by genotype differences in detoxifying enzymes such as glutathione S-transferase. The data obtained may prove to be useful for epidemiological studies.  相似文献   

18.
The genotype frequencies of three metabolic polymorphisms were determined in a sample of a typical community in central Mexico. CYP1A1*3, GSTM1, and GSTT1 polymorphisms were studied in 150 donors born in Mexico and with Mexican ascendants; with respect to ethnicity the subjects can be considered Mestizos. PCR reactions were used to amplify specific fragments of the selected genes from genomic DNA. An unexpected 56.7% frequency of the CYP1A1*3 allele (which depends on the presence of a Val residue in the 462 position of the enzyme, instead of Ile) was found, the highest described for open populations of different ethnic origins (i.e., Caucasian, Asian, African, or African American). The GSTM1 null genotype was found with a frequency of 42.6%, which is not different from other ethnicities, whereas the GSTT1 null genotype had a frequency of 9.3%, one of the lowest described for any ethnic group but comparable to the frequency found in India (9.7%). The frequency of the combined genotype CYP1A1*3/*3 and the GSTM1 null allele is one of the highest observed to date (or perhaps the highest): 13.7% among all the ethnicities studied, including Caucasians and Asians, whereas the combination of CYP1A1*3/*3 with the GSTT1 null allele reached only 2.8%. The GSTM1 null allele combined with the GSTT1 null allele, on the other hand, has one of the lowest frequencies described, 4.24%, comparable to the frequencies found in African Americans and Indians. Finally, the combined CYP1A1*3/*3, GSTM1 null allele, and GSTT1 null allele genotype could not be found in the sample studied; it is assumed that the frequency of carriers of these combined genotypes is less than 1%. CYP1A1*3 and CYP1A1*2 polymorphisms were also evaluated in 50 residents in a community of northern Mexico; the CYP1A1*3 frequency was 54%, similar to that found in the other community studied, and the CYP1A1*2 frequency was 40%, which is high compared to Caucasians and Asians but comparable to the frequency found in Japanese and lower than the frequency found in Mapuche Indians. Haplotype frequencies for these CYP1A1 polymorphisms were estimated, and a linkage disequilibrium value (D) of 0.137 was calculated.  相似文献   

19.
Coronary artery disease (CAD) is based on the atherosclerosis of coronary artery and may manifest with myocardial infarction or angina pectoris. Although it is widely accepted that genetic factors are linked to CAD and several disease-related genes have been reported, only a few could be replicated suggesting that there might be some other CAD-related genes. To identify novel susceptibility loci for CAD, we used microsatellite markers in the screening and found six different candidate CAD loci. Subsequent single nucleotide polymorphism (SNP) association studies revealed an association between CAD and megakaryoblastic leukemia factor-1 gene (MKL1). The association with a promoter SNP of MKL1, ?184C > T, was found in a Japanese population and the association was replicated in another Japanese population and a Korean population. Functional analysis of the MKL1 promoter SNP suggested that the higher MKL1 expression was associated with CAD. These findings suggest that MKL1 is involved in the pathogenesis of CAD.  相似文献   

20.
Ma L  Zhang H  Han C  Tong D  Zhang M  Yao Y  Luo Y  Liu X 《DNA and cell biology》2012,31(6):1064-1069
Fibroblast growth factors (FGFs) and their receptors (FGFRs) play crucial roles in vascular smooth muscle cell proliferation and atherosclerosis and, therefore, may potentially affect the development of coronary artery disease (CAD). FGFR4 rs351855 (Gly388Arg) polymorphism has shown to be a risk factor for many diseases. The aim of this study was to investigate the association between FGFR4 polymorphisms and the susceptibility to CAD in the Chinese population. Two polymorphisms, rs351855 (Gly388Arg) and rs641101, were detected by polymerase chain reaction-restriction fragment length polymorphism and direct sequencing in 687 CAD cases and 732 age-matched controls. Data were analyzed using the chi-square test. Results showed that frequencies of GA genotype, AA genotype, and A allele in rs351855 (Gly388Arg) polymorphism were significantly lower in CAD patients than in controls (odds ratio (OR)=0.78, 95% confidence intervals (CIs): 0.62-0.98, p=0.034; OR=0.58, 95% CI: 0.42-0.80, p=0.001; and OR=0.77, 95% CI: 0.66-0.90, p=0.001, respectively). The rs641101 polymorphism did not show any correlation with CAD. Haplotype analysis revealed that rs351855 and rs641101 AG haplotype also had lower frequency in CAD patients (OR=0.79, 95% CI: 0.67-0.92, p=0.002). Our data suggested that the FGFR4 rs351855 (Gly388Arg) polymorphism and AG haplotype (rs351855 and rs641101) could act as protective factors against CAD in the Chinese population and indicated that a single gene polymorphism could have diverse functions in different diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号