首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Islet transplantation is an attractive approach for treating type-1 diabetes, but there is a massive loss of transplanted islets. It is currently only possible to estimate islet mass indirectly, through measurement of circulating C-peptide and insulin levels. This type of estimation, however, is not sufficiently sensitive or reproducible for follow-up of individuals who have undergone islet transplantation. Here we show that islet graft survival could be assessed for 1 month in diabetic NOD mice using 9-(4-[(18)F]-fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG)-positron emission tomography (PET) technology, the PET signal reflecting insulin secretory capacity of transplanted islets. Expression of the gene encoding viral interleukin-10 (vIL-10), was measurable in real time with PET scanning. Additionally, we addressed the clinical potential of this approach by visualizing transplanted islets in the liver, the preferred clinical transplantation site. We conclude that quantitative in vivo PET imaging is a valid method for facilitating the development of protocols for prolonging islet survival, with the potential for tracking human transplants.  相似文献   

2.
In vivo imaging of islet transplantation   总被引:17,自引:0,他引:17  
Type 1 diabetes mellitus is characterized by the selective destruction of insulin-producing beta cells, which leads to a deficiency in insulin secretion and, as a result, to hyperglycemia. At present, transplantation of pancreatic islets is an emerging and promising clinical modality, which can render individuals with type 1 diabetes insulin independent without increasing the incidence of hypoglycemic events. To monitor transplantation efficiency and graft survival, reliable noninvasive imaging methods are needed. If such methods were introduced into the clinic, essential information could be obtained repeatedly and noninvasively. Here we report on the in vivo detection of transplanted human pancreatic islets using magnetic resonance imaging (MRI) that allowed noninvasive monitoring of islet grafts in diabetic mice in real time. We anticipate that the information obtained in this study would ultimately result in the ability to detect and monitor islet engraftment in humans, which would greatly aid the clinical management of this disease.  相似文献   

3.
The aim of this study is to determine and characterize factors influencing in vivo bioluminescence imaging (BLI) and apply them to the specific application of imaging transplanted pancreatic islets. Noninvasive quantitative assessment of transplanted pancreatic islets poses a formidable challenge. Murine pancreatic islets expressing firefly luciferase were transplanted under the renal capsule or into the portal vein of nonobese diabetic-severe combined immunodeficiency mice and the bioluminescence was quantified with a cooled charge coupled device camera and digital photon image analysis. The important, but often neglected, effects of wound healing, mouse positioning, and transplantation site on bioluminescence measurements were investigated by imaging a constant emission, isotropic light-emitting bead (lambda = 600) implanted at the renal or hepatic site. The renal beads emitted nearly four times more light than hepatic beads with a smaller spot size, indicating that light absorption and scatter are greatly influenced by the transplant site and must be accounted for in BLI measurements. Detected luminescence decreased with increasing angle between the mouse surface normal and optical axis. By defining imaging parameters such as postsurgical effects, animal positioning, and light attenuation as a function of transplant site, this study develops BLI as a useful imaging modality for quantitative assessment of islets post-transplantation.  相似文献   

4.
Type 1 diabetes results from the selective destruction of insulin-producing beta cells in the islets of Langerhans, and autoimmune T cells are thought to be the mediators of this destruction. T cells are also responsible for allorejection once the islets are transplanted into a patient to reduce the negative consequences of a lack of insulin. To better understand these processes, we have developed a transgenic mouse expressing proinsulin II tagged with a live-cell fluorescent reporter protein, Timer. Timer protein is unique because it changes color from green to red in the first 24 h after synthesis. With this marker, insulin synthesis can be carefully monitored through fluorescent changes over time. To complement this new biotechnological research tool, we designed a body window to allow for in vivo imaging over time of the islets transplanted under the kidney capsule. The window device, which is sutured to replace the underlying skin and body wall over the site of islet transplantation, may be used to simultaneously observe beta cells and T cells that have been labeled with a fluorochrome distinguishable from Timer. The imaging of both insulin-producing cells and T cells may be carried out repeatedly for a week or more with no need for repeated surgery, while preserving the life of the studied animal.  相似文献   

5.
There is clearly a demand for an experimental platform that enables cell biology to be studied in intact vascularized and innervated tissue in vivo. This platform should allow observations of cells noninvasively and longitudinally at single-cell resolution. For this purpose, we use the anterior chamber of the mouse eye in combination with laser scanning microscopy (LSM). Tissue transplanted to the anterior chamber of the eye is rapidly vascularized, innervated and regains function. After transplantation, LSM through the cornea allows repetitive and noninvasive in vivo imaging at cellular resolution. Morphology, vascularization, cell function and cell survival are monitored longitudinally using fluorescent proteins and dyes. We have used this system to study pancreatic islets, but the platform can easily be adapted for studying a variety of tissues and additional biological parameters. Transplantation to the anterior chamber of the eye takes 25 min, and in vivo imaging 1-5 h, depending on the features monitored.  相似文献   

6.
Recent studies have demonstrated that human islet allograft transplantation can be a successful therapeutic option in the treatment of patients with Type I diabetes. However, this impressive recent advance is accompanied by a very important constraint. There is a critical paucity of pancreatic islets or pancreatic beta cells for islet transplantation to become a large-scale therapeutic option in patients with diabetes. This has prompted many laboratories around the world to invigorate their efforts in finding ways for increasing the availability of beta cells or beta cell surrogates that potentially could be transplanted into patients with diabetes. The number of studies analyzing the mechanisms that govern beta cell proliferation and growth in physiological and pathological conditions has increased exponentially during the last decade. These studies exploring the role of growth factors, intracellular signaling molecules and cell cycle regulators constitute the substrate for future strategies aimed at expanding human beta cells in vitro and/or in vivo after transplantation. In this review, we describe the current knowledge on the effects of several beta cell growth factors that have been shown to increase beta cell proliferation and expand beta cell mass in vitro and/or in vivo and that they could be potentially deployed in an effort to increase the number of patients transplanted with islets. Furthermore, we also analyze in this review recent studies deciphering the relevance of these specific islet growth factors as physiological and pathophysiological regulators of beta cell proliferation and islet growth.  相似文献   

7.
In vivo monitoring of pancreatic beta-cells in a transgenic mouse model   总被引:2,自引:0,他引:2  
We generated a transgenic mouse model (RIP-luc) for the in vivo monitoring of pancreatic islet mass and function in response to metabolic disease. Using the rat insulin promoter fused to firefly luciferase, and noninvasive technology to detect luciferase activity, we tracked changes in reporter signal during metabolic disease states and correlated the changes in luciferase signal with metabolic status of the mouse. Transgene expression was found to be specific to the pancreatic islets in this transgenic model. Basal transgene expression was tracked in male and female mice fed either a chow or a high-fat diet and in response to treatment with streptozotocin. Pancreatic bioluminescent signal increased in mice fed a high-fat diet compared with chow-fed animals. In a model of chemically induced diabetes, the bioluminescent signal decreased in accordance with the onset of diabetes and reduction of islet beta-cell number. Preliminary studies using islets transplanted from this transgenic model suggest that in vivo image analysis can also be used to monitor transplanted islet viability and survival in the host. This transgenic model is a useful tool for in vivo studies of pancreatic beta-cells and as a donor for islet transplantation studies.  相似文献   

8.
Islet transplantation can reverse hyperglycaemia in Type 1 diabetes patients. One problem in islet transplantation is a loss of beta cell mass as well as blunted glucagon responses from the grafted islets. It has been suggested that alpha cell loss is associated with close contact of the alpha cells with the implantation organ. In the present study we made use of microencapsulation, where transplanted islets are not in direct contact with the host implantation site. After transplantation, the number of glucagon cells stained per microencapsulated islet section was increased whereas the number of insulin cells stained was decreased. DNA content of the islets was reduced, as was insulin content, whereas glucagon content was unchanged. This indicates that cell number in transplanted microencapsulated islets diminishes, which can be accounted for by loss of beta cells. However, in contrast to previous studies using non-encapsulated islets, alpha cell number seems to be maintained.  相似文献   

9.
To monitor pancreatic islet transplantation efficiency, reliable noninvasive imaging methods, such as magnetic resonance imaging (MRI) are needed. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially-available magnetic nanoparticles are not efficiently transduced into cells. We herein report the in vivo detection of transplanted islets labeled with a novel cationic nanoparticle that allowed for noninvasive monitoring of islet grafts in diabetic mice in real time. The positively-charged nanoparticles were transduced into a β-cell line, MIN6 cells, and into isolated islets for 1 hr. MRI showed a marked decrease in the signal intensity on T1- and T2-weighted images at the implantation site of the labeled MIN 6 cells or islets in the left kidneys of mice. These data suggest that the novel positively-charged nanoparticle could be useful to detect and monitor islet engraftment, which would greatly aid in the clinical management of islet transplant patients.  相似文献   

10.
AimsA significant portion of islet grafts are destroyed by apoptosis and fail to become functional after transplantation. Strategies that enhance islet resistance to apoptosis may prevent graft loss. The aim of this study was to investigate whether overexpression of suppressor of cytokine signaling 1 (SOCS1) in islet grafts could achieve an anti-apoptotic effect and prolong graft survival.Main methodsWe used a chimeric adenovirus vector (Ad5F35) to enhance SOCS1 expression in isolated rat islets, and assessed its protective action against TNF-α-induced apoptosis. After transplanting SOCS1-overexpressing islets into allogeneic recipients with streptozotocin-induced diabetes, graft survival and in situ apoptosis were analyzed using immunohistochemistry.Key findingsThe isolated rat islets infected with Ad5F35–SOCS1 showed significantly higher SOCS1 expression than Ad5F35–EGFP and mock infected islets. The Ad5F35 transfection and SOCS1 overexpression on islets did not affect their insulin secretory function. After treatment with rat TNF-α and cycloheximide in vitro, Ad5F35–-SOCS1 infected islets exhibited a lower apoptotic ratio than controls (Ad5F35–EGFP and mock infected islets). The diabetic recipients transplanted with Ad5F35–SOCS1 infected islets displayed longer time of normoglycemia than recipients transplanted with mock infected islets. Furthermore, histological analysis indicated that the infected grafts with local overexpression of SOCS1 showed decreased apoptosis in the early post-transplant period.SignificanceThese results demonstrate that overexpression of SOCS1 in islet grafts prior to transplantation can significantly protect them from apoptotic loss and prolong their survival. This approach might find a clinical counterpart.  相似文献   

11.
Insulin-dependent diabetes mellitus is an autoimmune disease that causes a progressive destruction of the pancreatic beta cells. As a result, the patient requires exogenous insulin to maintain normal blood glucose levels. Both the pancreas and the islets of Langerhans have been transplanted successfully in humans and in animal models, resulting in full normalization of glucose homeostasis. However, insulin independence, transient or persistent, was documented in only a small fraction of cases until recently. The chronic immunosuppression required to avoid immunological rejection appears to be toxic to the islets and adds the risk of lymphoproliferative disease reported earlier. For islet transplantation to become the method of choice, it is essential first to identify islet-friendly immunosuppressive regimens and/or to develop methods that induce donor-specific tolerance and improve islet isolation and transplantation protocols. Indeed, researchers have already successfully allografted islets in the presence of nonsteroidal immunosuppression in a process known as the Edmonton protocol. An alternative method, gene therapy, could replace these other methods and better meet the insulin requirement of an individual without requiring pancreatic or islet transplantation. This alternative, however, requires animal models to develop and test clinical protocols and to demonstrate the feasibility of preclinical trials. Nonhuman primates are ideally suited to achieve these goals. The efforts toward developing a nonhuman primate diabetic model with demonstrable insulin dependence are discussed and include pancreatic and islet transplant trials to reverse the diabetic state and achieve insulin independence. Also described are the various protocols that have been tested in primates to circumvent immunosuppression by using tolerance induction strategies in lieu of immunosuppression, thus exploring the field of donor-specific tolerance that extends beyond islet transplantation.  相似文献   

12.
Engraftment (i.e., the adaptation of transplanted pancreatic islets to their new surroundings with regard to revascularization, reinnervation, and reorganization of other stromal compartments) is of crucial importance for the survival and function of the endocrine cells. Previous studies suggest that transplantation induces both vascular and stromal dysfunctions in the implanted islets when compared with endogenous islets. Thus the vascular density and the blood perfusion of islet grafts is decreased and accompanied with a capillary hypertension. This leads to hypoxic conditions, with an associated shift toward anaerobic metabolism in grafted islets. An improved engraftment will prevent or compensate for the vascular/stromal dysfunction seen in transplanted islets and thereby augment survival of the islet implant. By such means the number of islets needed to cure the recipient will be lessened. This will increase the number of patients that can be transplanted with the limited material available.  相似文献   

13.

   

Pancreatic islet transplantation is considered an appropriate treatment to achieve insulin independence in type I diabetic patients. However, islet isolation and transplantation-induced oxidative stress and autoimmune-mediated destruction are still the major obstacles to the long-term survival of graft islets in this potential therapy. To protect islet grafts from inflammatory damage and prolong their survival, we transduced islets with an antioxidative gene thioredoxin (TRX) using a lentiviral vector before transplantation. We hypothesized that the overexpression of TRX in islets would prolong islet graft survival when transplanted into diabetic non-obese diabetic (NOD) mice.  相似文献   

14.
Advanced imaging techniques have become a valuable tool in the study of complex biological processes at the cellular level in biomedical research. Here, we introduce a new technical platform for noninvasive in vivo fluorescence imaging of pancreatic islets using the anterior chamber of the eye as a natural body window. Islets transplanted into the mouse eye engrafted on the iris, became vascularized, retained cellular composition, responded to stimulation and reverted diabetes. Laser-scanning microscopy allowed repetitive in vivo imaging of islet vascularization, beta cell function and death at cellular resolution. Our results thus establish the basis for noninvasive in vivo investigations of complex cellular processes, like beta cell stimulus-response coupling, which can be performed longitudinally under both physiological and pathological conditions.  相似文献   

15.
Islet transplantation therapy would be applicable to a wider range of diabetic patients if donor islet acceptance and protection were possible without systemic immunosuppression of the recipient. To this aim, gene transfer to isolated donor islets ex vivo is one method that has shown promise. This study examines the combined effect of selected immunomodulatory and anti-inflammatory genes known to extend the functional viability of pancreatic islet grafts in an autoimmune system. These genes, indoleamine 2,3-dioxygenase (IDO), manganese superoxide dismutase (MnSOD), and interleukin (IL)-1 receptor antagonist protein (IRAP), were transferred to isolated NOD donor islets ex vivo then transplanted to NODscid recipients and evaluated in vivo after diabetogenic T-cell challenge. The length of time the recipient remained euglycemic was used to measure the ability of the transgenes to protect the graft from autoimmune destruction. Although the results of these cotransfections gave little evidence of a synergistic relationship, they were useful to show that gene combinations can be used to more efficiently protect islet grafts from diabetogenic T cells.  相似文献   

16.
Diabetes of various degrees of severity was induced experimentally in rats by different doses of streptozotocin. These animals served as recipients for isolated islets of Langerhans from allogeneic donors. The islets were transplanted to different regions in the organism by paravascular or intravascular injection. As in pancreatectomized rats, the endocrine effect of the islets was only transient and consisted of disappearance of glycosuria, normalization of blood glucose and amelioration of intravenous glucose tolerance tests. When the islets were injected intravascularly (lung, liver) the influence of the transplanted islets was observable over a longer period than after subcutaneous or another paravascular transplantation. As in pancreatectomized animals, the period of survival was markedly prolonged in rats which had received a transplant compared to those which had not. The islets responded to glucose stimulation in vivo with insulin secretion similar to that of control rats, while only a very slight elevation of the low basis levels in streptozotocin-treated rats was observed.  相似文献   

17.
Encapsulation of pancreatic islets before transplantation enables survival and function in an immunocompetent recipient without immunosuppression. However, the insufficient availability of allogenic islet tissue is a major problem. One concept to overcome these shortcomings is the cryopreservation of microencapsulated allogenic islets, to allow their unlimited collection and use on demand. Therefore, this report outlines the development of a cryopreservation protocol for CD rat islets encapsulated in an alginate-based microcapsule-system. We determined RPMI-medium plus 10% FCS as freezing medium, equilibration at 0°C for 15 min with the cryoprotectant dimethyl sulfoxide (DMSO; final concentration 2.0M), and a stepwise removal of DMSO by sucrose dilution after thawing, as best protocol for cryopreservation of encapsulated islets. Importantly, the cryopreserved encapsulated islets showed post thawing in vitro an insulin increase upon a glucose challenge comparable to that of non-cryopreserved encapsulated islets. Moreover, a stable graft function without the need of immunosuppression was detected after transplantation of 2500 cryopreserved encapsulated CD rat islets in streptozotocin-diabetic Wistar rats. Finally, the glucose clearance rate during an IPGTT 4 weeks after transplantation was comparable to that of rats transplanted with non-cryopreserved encapsulated islets. In conclusion, our study demonstrates for the first time that cryopreservation of encapsulated rat islets is possible without substantial losses on graft function. Future studies will now have to carry on this approach to human islets, aiming to apply such a bioartificial pancreas consisting of cryopreserved encapsulated islets in humans.  相似文献   

18.
Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After (64)Cu labeling, biodistribution studies and microPET imaging of (64)Cu-DO3A-VS-Cys(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of (64)Cu-DO3A-VS-Cys(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human.  相似文献   

19.
Transplantation therapy for human diabetes is limited by the toxicity of immunosuppressive drugs. If toxicity can be minimized, there will still be a shortage of human donor organs. Xenotransplantation of porcine islets is a strategy to overcome supply problems. Xenotransplantation in mesentery of pig pancreatic primordia obtained very early during organogenesis [embryonic day 28 (E28)] is a way to obviate the need for immunosuppression in rats or rhesus macaques and to enable engraftment of a cell component originating from porcine islets implanted beneath the renal capsule of rats. Here, we show engraftment in the kidney of insulin and porcine proinsulin mRNA-expressing cells following implantation of porcine islets beneath the renal capsule of diabetic rhesus macaques transplanted previously with E28 pig pancreatic primordia in mesentery. Donor cell engraftment is confirmed using fluorescent in situ hybridization (FISH) for the porcine X chromosome and is supported by glucose-stimulated insulin release in vitro. Cells from islets do not engraft in the kidney without prior transplantation of E28 pig pancreatic primordia in mesentery. This is the first report of engraftment following transplantation of porcine islets in non-immunosuppressed, immune-competent non-human primates. The data are consistent with tolerance to a cell component of porcine islets induced by previous transplantation of E28 pig pancreatic primordia.  相似文献   

20.
Human umbilical cord mesenchymal stem cells (hUC‐MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle. The purpose of our study was to prospectively evaluate the influence of SPIO on hUC‐MSCs and the feasibility of tracking for hUC‐MSCs by noninvasive imaging. In vitro studies demonstrated that magnetic resonance imaging (MRI) can efficiently detect low numbers of SPIO‐labeled hUC‐MSCs and that the intensity of the signal was proportional to the number of labeled cells. After transplantation into focal areas in adult rat spinal cord transplanted SPIO‐labeled hUC‐MSCs produced a hypointense signal using T2‐weighted MRI in rats that persisted for up to 2 weeks. This study demonstrated the feasibility of noninvasive imaging of transplanted hUC‐MSCs. J. Cell. Biochem. 108: 529–535, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号