首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different classes of signals for plant vacuolar targeting have been defined. Previous work has demonstrated that the carboxyl-terminal propeptide (CTPP) of barley lectin (BL) is a vacuolar targeting signal in tobacco plants. When a mutant BL protein lacking the CTPP is expressed in tobacco, the protein is secreted. In an effort to determine the universality of this signal, the CTPP was tested for its ability to target proteins to the vacuole of Saccharomyces cerevisiae. Genes encoding fusion proteins between the yeast secreted protein invertase and BL domains were synthesized and transformed into an invertase deletion mutant of yeast. Invertase assays on intact and detergent-solubilized cells demonstrated that invertase+CTPP was secreted, while nearly 90% of the invertase::BL+CTPP (fusion protein between invertase and BL containing the CTPP) and invertase::BL-CTPP proteins (fusion between invertase and BL lacking the CTPP) were retained intracellularly. These fusions were secreted in a mutant of yeast that normally secretes proteins targeted to the vacuole. With this and previous work, proteins representing all three classes of plant vacuolar targeting signals have now been tested in yeast, and in all cases, the experiments indicate that the plant proteins are directed to the yeast vacuole using signals other than those recognized by plants.  相似文献   

2.
Sorting of soluble ER proteins in yeast.   总被引:64,自引:14,他引:50       下载免费PDF全文
In animal cells, luminal endoplasmic reticulum (ER) proteins are prevented from being secreted by a sorting system that recognizes the C-terminal sequence KDEL. We show that yeast has a similar sorting system, but it recognizes HDEL, rather than KDEL: derivatives of the enzyme invertase that bear the HDEL signal fail to be secreted. An invertase fusion protein that is retained in the cells is partially modified by outer-chain mannosyl transferases, which reside in the Golgi element. This supports the view, based on studies in animal cells, that ER targeting is achieved by continuous retrieval of proteins from the Golgi. We have used an invertase fusion gene to screen for mutants that are defective in this sorting system. Over 60 mutants were obtained; eight of these are alleles of a single gene, erd1. The mutant strains grow normally at 30 degrees C, but instead of retaining the fusion protein in the cells, they secrete it.  相似文献   

3.
信号肽捕获系统的建立   总被引:7,自引:2,他引:5  
孙强  王冀姝  李荣  周鹏  黄红艳  韩骅 《遗传学报》2001,28(4):379-384
细胞分泌蛋白的分泌有赖于蛋白质N端的信号肽的存在,利用酵母建立了从cDNA文库中筛选编码信号肽的基因片段的遗传系统,为此,用一步基因破坏法对酿酒酵母EGY48基因组中的suc2基因(编码酵母蔗糖转换酶)进行了定位突变,获得了无蔗糖转换酶表达的酵母株EGY48-suc。将无信号肽的suc 2成熟肽基因克隆于酵母乙 氢酶(ADHI)基因启动子下游,得到用于文库筛选的酵母真核表达工体,启动子与成熟肽基因之间为多克隆位 ,用于插入待筛选的CDNA文库,用此载体转化酵母EGY48-suc,所得克隆可以在葡萄糖为碳源的培养基上生长,但不能在以棉子糖为碳源的培养基上生长,在suc 2成熟肽基因前分别插入suc 2信号肽基因片段或人IL-2受体α链信号肽基因片段,然后转染EGY48-suc,所得克隆既能在以葡萄糖为碳源的培养基上生长,也能在以棉子糖为碳源的培养基上生长,表明构建的系统可用于筛选插篱多克隆位点cDNA片段是否具有编码信号肽的功能。  相似文献   

4.
We have evaluated the fate of misfolded protein domains in the Saccharomyces cerevisiae secretory pathway by fusing mutant forms of the NH2-terminal domain of lambda repressor protein to the secreted protein invertase. The hybrid protein carrying the wild-type repressor domain is mostly secreted to the cell surface, whereas hybrid proteins with amino acid substitutions that cause the repressor domain to be thermodynamically unstable are retained intracellularly. Surprisingly, the retained hybrids are found in the vacuole, where the repressor moiety is degraded by vacuolar proteases. The following observations indicate that receptor-mediated recognition of the mutant repressor domain in the Golgi lumen targets these hybrid fusions to the vacuole. (a) The invertase-repressor fusions, like wild-type invertase, behave as soluble proteins in the ER lumen. (b) Targeting to the vacuole is saturable since overexpression of the hybrids carrying mutant repressor increases the fraction of fusion protein that appears at the cell surface. (c) Finally, deletion of the VPS10 gene, which encodes the transmembrane Golgi receptor responsible for targeting carboxypeptidase Y to the vacuole, causes the mutant hybrids to be diverted to the cell surface. Together these findings suggest that yeast have a salvage pathway for degradation of nonnative luminal proteins by receptor- mediated transport to the vacuole.  相似文献   

5.
Sequential processing of the transmembrane amyloid precursor protein (APP) by the beta-secretase BACE and by the gamma-secretase causes secretion of Abeta peptides. Extracellular aggregation of these peptides in the brain is a major hallmark of Alzheimer's disease. For therapeutic purposes and the development of specific inhibitors, it is important to characterize these secretases. We have established a cellular growth selection system for functional expression of human BACE in the yeast Saccharomyces cerevisiae. A fragment of APP bearing the beta-site, the transmembrane domain and the cytosolic tail was fused to the C-terminus of the yeast enzyme invertase, which is normally secreted to allow cell growth in the presence of sucrose as the sole carbon source. The resulting invertase-APP fusion protein was expressed as a type-I transmembrane protein in intracellular compartments of yeast cells lacking endogenous invertase. In these cells, co-expression of human BACE restored cell growth on selective plates upon cleavage of the invertase-APP fusion protein. The cellular growth selection system presented here can be generally applied to screen for secretases that specifically cleave membrane-bound substrates. Furthermore, this system provides the basis for a high-throughput screen for identifying secretase inhibitors that are active in eukaryotic cells.  相似文献   

6.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289-296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

7.
8.
An inactive precursor form of proteinase A (PrA) transits through the early secretory pathway before final vacuolar delivery. We used gene fusions between the gene coding for PrA (PEP4) and the gene coding for the secretory enzyme invertase (SUC2) to identify vacuolar protein-sorting information in the PrA precursor. We found that the 76-amino-acid preprosegment of PrA contains at least two sorting signals: an amino-terminal signal peptide that is cleaved from the protein at the level of the endoplasmic reticulum followed by the prosegment which functions as a vacuolar protein-sorting signal. PrA-invertase hybrid proteins that carried this sequence information were accurately sorted to the yeast vacuole as determined by cell fractionation and immunolocalization studies. Hybrid proteins lacking all or a portion of the PrA prosegment were secreted from the cell. Our gene fusion data together with an analysis of the wild-type PrA protein indicated that N-linked carbohydrate modifications are not required for vacuolar sorting of this protein. Furthermore, results obtained with a set of deletion mutations constructed in the PrA prosegment indicated that this sequence also contributes to proper folding of this polypeptide into a stable transit-competent molecule.  相似文献   

9.
We constructed a novel system for periplasmic localization of target proteins, using yeast external invertase (INV) as anchor protein, in which the C- or N-terminal of the target protein was fused to the invertase and the fusion proteins expressed under the control of the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (GAPDH). Unlike in conventional cell-surface display, the system enables the target fusion protein to localize in yeast periplasm in a free state. As a model, enhanced green fluorescence protein (EGFP) was localized in yeast periplasm using the new system. Yeast-periplasm localization of INV-EGFP and EGFP-INV fusion proteins was confirmed by fluorescence microscopy and immunoblotting: green fluorescence was observed at the cell outline and, in western blot analysis, most fusion proteins were detected in the cell-surface fraction, indicating that the fusion proteins had been transported to the cell-surface layer. In addition, in both C- and N-terminal fusion, invertase showed activity, indicating dimer formation. These results demonstrate that invertase is a useful anchor for localizing target protein in the yeast periplasm.  相似文献   

10.
Yeast vacuoles undergo fission and homotypic fusion, yielding one to three vacuoles per cell at steady state. Defects in vacuole fusion result in vacuole fragmentation. We have screened 4828 yeast strains, each with a deletion of a nonessential gene, for vacuole morphology defects. Fragmented vacuoles were found in strains deleted for genes encoding known fusion catalysts as well as 19 enzymes of lipid metabolism, 4 SNAREs, 12 GTPases and GTPase effectors, 9 additional known vacuole protein-sorting genes, 16 protein kinases, 2 phosphatases, 11 cytoskeletal proteins, and 28 genes of unknown function. Vacuole fusion and vacuole protein sorting are catalyzed by distinct, but overlapping, sets of proteins. Novel pathways of vacuole priming and docking emerged from this deletion screen. These include ergosterol biosynthesis, phosphatidylinositol (4,5)-bisphosphate turnover, and signaling from Rho GTPases to actin remodeling. These pathways are supported by the sensitivity of the late stages of vacuole fusion to inhibitors of phospholipase C, calcium channels, and actin remodeling. Using databases of yeast protein interactions, we found that many nonessential genes identified in our deletion screen interact with essential genes that are directly involved in vacuole fusion. Our screen reveals regulatory pathways of vacuole docking and provides a genomic basis for studies of this reaction.  相似文献   

11.
When the heterologous proteins thaumatin and bovine prochymosin are produced in yeast cells as a fusion with the yeast invertase secretory signal peptide, less than 2% of the product is secreted in a biologically active form into the medium. The remainder accumulates intracellularly in a misfolded conformation. We investigated whether this poor secretion can be improved by overexpression of binding protein (BiP) one of the major chaperones in eukaryotic cells. Indeed, a tenfold increase in the level of binding protein, as a result of the introduction of extra copies of the kar2 gene into yeast cells containing a single, integrated copy of the invertase/prochymosin fusion gene, caused more than a 20-fold increase in the amount of extracellular prochymosin. By additional disruption of the PMR1 gene of these cells we were able to obtain secretion of virtually all of the prochymosin produced. Export of thaumatin, on the other hand, was not significantly stimulated by binding protein overexpression.  相似文献   

12.
Yeast protein insertion orientation (PIO) mutants were isolated by selecting for growth on sucrose in cells in which the only source of invertase is a C-terminal fusion to a transmembrane protein. Only the fraction with an exocellular C terminus can be processed to secreted invertase and this fraction is constrained to 2-3% by a strong charge difference signal. Identified pio mutants increased this to 9-12%. PIO1 is SPF1, encoding a P-type ATPase located in the endoplasmic reticulum (ER) or Golgi. spf1-null mutants are modestly sensitive to EGTA. Sensitivity is considerably greater in an spf1 pmr1 double mutant, although PIO is not further disturbed. Pmr1p is the Golgi Ca(2+) ATPase and Spf1p may be the equivalent ER pump. PIO2 is STE24, a metalloprotease anchored in the ER membrane. Like Spf1p, Ste24p is expressed in all yeast cell types and belongs to a highly conserved protein family. The effects of ste24- and spf1-null mutations on invertase secretion are additive, cell generation time is increased 60%, and cells become sensitive to cold and to heat shock. Ste24p and Rce1p cleave the C-AAX bond of farnesylated CAAX box proteins. The closest paralog of SPF1 is YOR291w. Neither rce1-null nor yor291w-null mutations affected PIO or the phenotype of spf1- or ste24-null mutants. Mutations in PIO3 (unidentified) cause a weaker Pio phenotype, enhanced by a null mutation in BMH1, one of two yeast 14-3-3 proteins.  相似文献   

13.
We have screened a Hydra cDNA library for sequences encoding N-terminal signal peptides using the yeast invertase secretion vector pSUC [Jacobs et al., 1997. A genetic selection for isolating cDNAs encoding secreted proteins. Gene 198, 289–296]. We isolated and sequenced 907 positive clones; 88% encoded signal peptides; 12% lacked signal peptides. By searching the Hydra EST database we identified full-length sequences for the selected clones. These encoded 37 known proteins with signal peptides and 40 novel Hydra-specific proteins with signal peptides. Localization of two signal peptide-containing sequences, VEGF and ferritin, to the secretory pathway was confirmed with GFP fusion proteins. In addition, we isolated 105 clones which lacked signal peptides but which supported invertase secretion from yeast. Isolation of plasmids from these clones and retransformation in invertase-negative yeast cells confirmed the phenotype. A GFP fusion protein of one such clone encoding the foot morphogen pedibin was localized to the cytoplasm in transfected Hydra cells and did not enter the ER/Golgi secretory pathway. Secretion of pedibin and other proteins lacking signal peptides appears to occur by a non-classical protein secretion route.  相似文献   

14.
15.
Although enolase, other glycolytic enzymes, and a variety of cytoplasmic proteins lacking an N-terminal secretion signal have been widely described as located at the cell surface in yeast and in mammalian cells, their presence in this external location is still controversial. Here, we report that different experimental approaches (genetics, cellular biology and proteomics) show that yeast enolase can reach the cell surface and describe the protein regions involved in its cell surface targeting. Hybrid enolase truncates, fused at their C terminus with the yeast internal invertase or green fluorescent protein (GFP) as reporter proteins, proved that the 169 N-terminal amino acids are sufficient to target the protein to the cell surface. Furthermore, the enolase-GFP fusion co-localized with a plasma membrane marker. Enolase was also identified among membrane proteins obtained by a purification protocol that includes sodium carbonate to prevent cytoplasmic contamination. These proteins were analyzed by SDS-PAGE, trypsin digestion and LC-MS/MS for peptide identification. Elongation factors, mitochondrial membrane proteins and a mannosyltransferase involved in cell wall mannan biosynthesis were also identified in this fraction.  相似文献   

16.
Summary Various gene fusions between the arginine permease and invertase have been constructed in order to obtain information about whether part of the CAN1 gene product can induce secretion of biologically active invertase missing its own signal sequence. A construction containing 30 N-terminal amino acid residues of the CAN1 gene product fused to invertase was not secreted. When the CAN1 portion was elongated to 477 or 560 amino acid residues, secretion of the fusion proteins was observed. A fusion lacking 59 amino acids at the amino-terminal end of the arginine permease was also secreted. These results indicate that the amino-terminal end of the arginine permease is neither sufficient nor essential for membrane insertion; instead this enzyme should contain an internal targeting sequence facilitating secretion. Some general implications on the biosynthesis and topology of membrane proteins are also discussed as well as the homology with histidine permease.  相似文献   

17.
The yeast SUC2 gene codes for the secreted enzyme invertase. A series of 16 different-sized gene fusions have been constructed between this yeast gene and the Escherichia coli lacZ gene, which codes for the cytoplasmic enzyme beta-galactosidase. Various amounts of SUC2 NH2-terminal coding sequence have been fused in frame to a constant COOH-terminal coding segment of the lacZ gene, resulting in the synthesis of hybrid invertase-beta-galactosidase proteins in Saccharomyces cerevisiae. The hybrid proteins exhibit beta-galactosidase activity, and they are recognized specifically by antisera directed against either invertase or beta-galactosidase. Expression of beta-galactosidase activity is regulated in a manner similar to that observed for invertase activity expressed from a wild-type SUC2 gene: repressed in high-glucose medium and derepressed in low-glucose medium. Unlike wild-type invertase, however, the invertase-beta-galactosidase hybrid proteins are not secreted. Rather, they appear to remain trapped at a very early stage of secretory protein transit: insertion into the endoplasmic reticulum (ER). The hybrid proteins appear only to have undergone core glycosylation, an ER process, and do not receive the additional glycosyl modifications that take place in the Golgi complex. Even those hybrid proteins containing only a short segment of invertase sequences at the NH2 terminus are glycosylated, suggesting that no extensive folding of the invertase polypeptide is required before initiation of transmembrane transfer. beta-Galactosidase activity expressed by the SUC2-lacZ gene fusions cofractionates on Percoll density gradients with ER marker enzymes and not with other organelles. In addition, the hybrid proteins are not accessible to cell-surface labeling by 125I. Accumulation of the invertase-beta-galactosidase hybrid proteins within the ER does not appear to confer a growth-defective phenotype to yeast cells. In this location, however, the hybrid proteins and the beta-galactosidase activity they exhibit could provide a useful biochemical tag for yeast ER membranes.  相似文献   

18.
Plant cells secrete diverse sets of constitutively- and conditionally-expressed proteins under various environmental and developmental states. Secreted protein populations, or secretomes have multiple functions, including defense responses, signaling, metabolic processes, and developmental regulation. To identify genes encoding secreted proteins that function in fruit development and ripening, a yeast secretion trap (YST) screen was employed using pepper (Capsicum annuum) fruit cDNAs. The YST screen revealed 80 pepper fruit-related genes (CaPFRs) encoding secreted proteins including cell wall proteins, several of which have not been previously described. Transient GFP-fusion assay and an in planta secretion trap were used to validate the secretion of proteins encoded by selected YST clones. In addition, RNA gel blot analyses provided further insights into their expression and regulation during fruit development and ripening. Integrating our data, we conclude that the YST provides a valuable functional genomics tool for the identification of substantial numbers of novel secreted plant proteins that are associated with biological processes, including fruit development and ripening.  相似文献   

19.
PPE represent a peculiar family of mycobacterial proteins characterized by a 180 aminoacids conserved N-terminal domain. Several PPE genes are co-transcribed with a gene encoding for a protein belonging to another family of mycobacterial specific proteins named PE. Only one PE-PPE couple has been extensively characterized so far (PE25-PPE41) and it was shown that these two proteins form a heterodimer and that this interaction is essential for PPE41 stability and translocation through the mycobacterial cell wall. In this study we characterize the PE11-PPE17 couple. In contrast with what was found for PE25-PPE41, we show that PPE17 is not secreted but surface exposed. Moreover, we demonstrate that the presence of PE11 is not necessary for PPE17 stability or for its localization on the mycobacterial surface. Finally, we show that the PPE domain of PPE17 targets the mycobacterial cell wall and that this domain can be used as a fusion partner to expose heterologous proteins on the mycobacterial surface.  相似文献   

20.
Vibrio parahaemolyticus isolates display variation in colony morphology, alternating between opaque (OP) and translucent (TR) cell types. Phase variation is the consequence of genetic alterations in the locus encoding the quorum sensing output regulator OpaR. Here, we show that both cell types form stable, but distinguishable biofilms that differ with respect to attachment and detachment profiles to polystyrene, pellicle formation and stability at the air/medium interface, and submerged biofilm architecture and dispersion at a solid/liquid interface. The pellicle, which is a cohesive mat of cells, was exploited to identify mutants having altered or defective biofilm formation. Transposon insertion mutants were obtained with defects in genes affecting multiple cell surface characteristics, including extracellular polysaccharide, mannose-sensitive haemagglutinin type 4 pili and polar (but not lateral) flagella. Other insertions disrupted genes coding for potential secreted proteins or transporters of secreted proteins, specifically haemolysin co-regulated protein and an RTX toxin-like membrane fusion transporter, as well as potential modifiers of cell surface molecules (nagAC operon). The pellicle screen also identified mutants with lesions in regulatory genes encoding H-NS, a CsgD-like repressor and an AraC-like protein. This work initiates the characterization of V. parahaemolyticus biofilm formation in the OP and TR cell types and identifies a diverse repertoire of cell surface elements that participate in determining multicellular architecture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号