首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Abstract

Deoxyribonucleoside triphosphates (dNTPs) are building blocks for the biosynthesis of DNA. Various modified dNTPs’ analogs have synthesized by structural changes of nucleoside’s susgar and nucleobases and employed for synthesis of modified DNA. A very few modified dNTPs have prepared from non-sugar nucleoside analogs. This report describes the synthesis of acyclic nucleoside triphosphate (NTP) analog from amino acid L-Serine as aminopropanolyl-thymine triphosphate (ap-TTP) and demonstrate its biochemical evaluation as enzymatic incorporation of ap-TTP into DNA with DNA polymerases with primer extension methods. Alanyl peptide nucleicacids (Ala-PNA) are the analogs of DNA which contains alanyl backbone. Aminopropanolyl – analogs are derivatives of alanyl back bone. Ap-TTP analog is nucleoside triphosphate analog derived from Ala-PNA. Importantly, this report also sheds light on the crystal packing arrangement of alaninyl thymine ester derivative in solid-state and reveals the formation of self-duplex assembly in anti-parallel fashion via reverse Watson-Crick hydrogen bonding and π–π interactions. Hence, ap-TTP is a useful analog which also generates the free amine functional group at the terminal of DNA oligonucleotide after incorporation.  相似文献   

3.
Pteridine nucleoside analog probes are highly fluorescent and offer different approaches to monitor subtle DNA interactions with other molecules. Similarities in structure and size to native nucleosides make it possible to incorporate these probes into oligonucleotides through the standard deoxyribose linkage. These probes are formulated as phosphoramidites and incorporated into oligonucleotides using automated DNA synthesis. Their position within the oligonucleotide renders them exquisitely sensitive to changes in structure as the oligonucleotide meets and reacts with other molecules. Changes are measured through fluorescence intensity, anisotropy, lifetimes, spectral shifts, and energy transfer. The fluorescence properties of pteridine nucleoside analogs as monomers and incorporated into single and double stranded oligonucleotides are reviewed. The two guanosine analogs, 3MI and 6MI, and two adenosine analogs, 6MAP and DMAP, are reviewed in detail along with applications utilizing them.  相似文献   

4.
The dideoxynucleoside triphosphates (ddNTPs) terminate the bio-polymerization of DNA and become essential chemical component of DNA sequencing technology which is now basic tool for molecular biology research. In this method the radiolabeled or fluorescent dye labeled ddNTP analogues are being used for DNA sequencing by detection of the terminated DNA fragment after single labeled ddNTP incorporation into DNA under PCR conditions. This report describes the syntheses of rationally designed novel amino-functionalized ddNTP analogue such as Pyrrolidine nucleoside triphosphates (prNTPs), and their polymerase activities with DNA polymerase by LC–MS and Gel-electrophoretic techniques. The Mass and PAGE analyses strongly support the incorporation of prNTPs into DNA oligonucleotide with Therminator DNA polymerase as like control substrate ddNTP. As resultant the DNA oligonucleotide are functionalized as amine group by prNTP incorporation with polymerase. Hence prNTPs provide opportunities to prepare demandable conjugated DNA with other biomolecules/dyes/fluorescence molecule without modifying nucleobase structure.  相似文献   

5.
6.
The tricyclic cytosine, tC, is a fluorescent base analogue with excellent properties for investigating intrinsic characteristics of nucleic acid as well as interactions between nucleic acids and other molecules. Its unique fluorescence properties and insignificant influence on overall structure and dynamics of nucleic acid after incorporation makes tC particularly interesting in fluorescence resonance energy transfer and anisotropy measurements. We here describe a straightforward synthesis of the standard monomer form of tC for DNA solid-phase synthesis, the tC phosphoramidite, and its subsequent incorporation into oligonucleotides. The total synthesis of the tC phosphoramidite takes approximately 8 days and its incorporation and the subsequent oligonucleotide purification an additional day.  相似文献   

7.
We report the site-specific fluorescent labeling of DNA using Staudinger ligation with high efficiency and high selectivity. An oligonucleotide modified at its 5' end by an azido group was selectively reacted with 5-[(N-(3'-diphenylphosphinyl-4'-methoxycarbonyl)phenylcarbonyl)aminoacetamido]fluorescein (Fam) under aqueous conditions to produce a Fam-labeled oligonucleotide with a high yield (approximately 90%). The fluorescent oligonucleotide was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Because of the relatively high yield of the Staudinger ligation, simple purification of the product by size-exclusion chromatography and desalting is sufficient for the resulting fluorescent oligonucleotide to be used as a primer in a Sanger dideoxy sequencing reaction to produce fluorescent DNA extension fragments, which are analyzed by a fluorescent electrophoresis DNA sequencer. The results indicate that the Staudinger ligation can be used successfully and site-specifically to prepare fluorescent oligonucleotides to produce DNA sequencing products, which are detected with single base resolution in a capillary electrophoresis DNA sequencer using laser-induced fluorescence detection.  相似文献   

8.
9.
To explore the potential use of a nucleoside analog, N4-aminocytidine, in studies of cellular biology, the mechanism of mutation induced by this compound in mouse FM3A cells in culture was studied. On treatment of cells in suspension with N4-aminocytidine, the mutation to ouabain resistance was induced. The major DNA-replicating enzyme in mammalian cells, DNA polymerase alpha, was used to investigate whether the possible cellular metabolite of N4-aminocytidine, N4-aminodeoxycytidine 5'-triphosphate (dCamTP), can be incorporated into the DNA during replication. Using [3H]dCamTP in an in vitro DNA-synthesizing system, we were able to show that this nucleotide analog can be incorporated into newly formed DNA and that it can serve as a substitute for either dCTP or dTTP. dCamTP in the absence of dCTP maintained the activated calf thymus DNA-directed polymerization of deoxynucleoside triphosphates as efficiently as in its presence. Even in the presence of dCTP, dCamTP was incorporated into the polynucleotide. When dCamTP was used as a single substrate in the poly(dA)-oligo(dT)-directed polymerase reaction, it was incorporated into the polynucleotide fraction. The extent of incorporation was 4% of that of dTTP incorporation when dTTP was used as a single substrate. Even in the presence of dTTP, dCamTP incorporation was observed. A copolymer containing N4-aminocytosine residues was shown to incorporate guanine residues opposite the N4-aminocytosines. However, we were unable to observe adenine incorporation opposite N4-aminocytosine in templates. These cell-free experiments show that an AT-to-GC transition can take place in the presence of dCamTP during DNA synthesis, strongly suggesting that the mutation induced in the FM3A cells by N4-aminocytidine is due to replicational errors.  相似文献   

10.
N4-Aminocytidine, a nucleoside analog, is strongly mutagenic to various organisms including Escherichia coli. Using E. coli WP2 (trp), we measured the incorporation of [5-3H]N4-aminocytidine into DNA and at the same time measured the frequency of reversion of the wild type, thereby attempting to correlate the incorporation with mutation induction. First, we observed that N4-aminocytidine uptake by the E. coli cells was as efficient as cytidine uptake. High-pressure liquid chromatographic analysis of nucleoside mixtures obtained by enzymatic digestion of isolated cellular DNA showed that the DNA contained [3H]N4-aminodeoxycytidine, corresponding to 0.01 to 0.07% of the total nucleoside; the content was dependent on the dose of N4-aminocytidine. There was a linear relationship between the N4-aminocytosine content in DNA and the mutation frequency observed. These results constitute strong evidence for the view that the N4-aminocytidine-induced mutation in E. coli is caused by the incorporation of this agent into DNA as N4-aminodeoxycytidine. We also found that the major portion of radioactivity in DNA of cells that had been treated with [5-3H]N4-aminocytidine was in the deoxycytidine fraction. We propose a metabolic pathway for N4-aminocytidine in cells of E. coli. This pathway involves the formation of both N4-aminodeoxycytidine 5'-triphosphate and deoxycytidine 5'-triphosphate; the deoxycytidine 5'-triphosphate formation is initiated by conversion of N4-aminocytidine into uridine. In support of this proposed scheme, a cytidine deaminase preparation obtained from E. coli catalyzed the decomposition of N4-aminocytidine into uridine and hydrazine.  相似文献   

11.
N3-Ethylthymidine (N3-Et-dT) was site specifically incorporated into a 17-nucleotide oligomer to investigate the significance of DNA ethylation at the central hydrogen-bonding site (N3) of thymine. The 5'-(dimethoxytrityl)-protected N3-Et-dT was converted to the corresponding 3'-phosphoramidite and used to incorporate N3-Et-dT at a single site in the oligonucleotide during synthesis by the phosphite triester method. The purified N3-Et-dT-containing oligomer was ligated to a second 17-mer to yield a 34-nucleotide template with N3-Et-dT present at position 26 from the 3'-end. The template DNA, which corresponds to a specific sequence at gene G of bacteriophage phi X174, was used to study the specificity of nucleotide incorporation opposite N3-Et-dT. At 10 microM dNTP and 5 mM Mg2+, N3-Et-dT blocked DNA synthesis by Escherichia coli polymerase I (Klenow fragment): 96% immediately 3' to N3-Et-dT and 4% after incorporation of a nucleotide opposite N3-Et-dT (incorporation-dependent blocked product). DNA replication past the lesion (postlesion synthesis) was negligible. Incorporation opposite N3-Et-dT increased with increased dNTP concentrations, reaching 35% at 200 microM. Postlesion synthesis remained negligible. DNA sequencing of the incorporation-dependent blocked product revealed that dA is incorporated opposite N3-Et-dT consistent with the "A" rule in mutagenesis. Formation of the N3-Et-dT.dA base pair at the 3'-end of the growing chain terminated DNA synthesis. These results implicate N3-Et-dT as a potentially cytotoxic lesion produced by ethylating agents.  相似文献   

12.
Pyrrolo-C (PC), or 3-[beta-D-2-ribofuranosyl]-6-methylpyrrolo[2,3-d]pyrimidin-2(3H)-one, is a fluorescent analog of the nucleoside cytidine that retains its Watson-Crick base-pairing capacity with G. Due to its red-shifted absorbance, it can be selectively excited in the presence of natural nucleosides, making it a potential site-specific probe for RNA structure and dynamics. Similar to 2-aminopurine nucleoside, which base-pairs with uridine (or thymidine), PC's fluorescence becomes reversibly quenched upon base-pairing, most likely due to stacking interactions with neighboring bases. To test its utility as an RNA probe, we examined PC's fluorescent properties over a wide range of ionic strengths, pH, organic cosolvents, and temperatures. Incorporation of PC into a single-stranded RNA results in an approximately 60% reduction of fluorescence intensity, while duplex formation reduces the fluorescence by approximately 75% relative to the free ribonucleoside. We find that the fluorescence intensity of PC is only moderately affected by ionic strength, pH, and temperature, while it is slightly enhanced by organic cosolvents, making it a versatile probe for a broad range of buffer conditions. We demonstrate two applications for PC: fluorescent measurements of the kinetics of formation and dissociation of an RNA/DNA complex, and fluorescent monitoring of the thermal denaturation of the central segment of an RNA duplex. Taken together, our data showcase the potential of pyrrolo-C as an effective fluorescent probe to study RNA structure, dynamics, and function, complementary to the popular 2-aminopurine ribonucleoside.  相似文献   

13.
14.
We have studied mutagenic specificities of DNA lesions in vivo in yeast CYC1 oligonucleotide transformation assay. We introduced two lesions into oligonucleotides. One was a nucleoside analog, 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 2'-deoxyriboside (dP), which is highly mutagenic to bacteria. It is supposed to be a miscoding, but otherwise good template for DNA polymerases. The other lesion was the TT pyrimidine(6-4)pyrimidone photoproduct, one of the typical UV lesions, which blocks DNA replication. These oligonucleotides were used to transform yeast cyc1 mutants with ochre nonsense mutation to Cyc1+. As expected from its templating properties in vitro, the transforming activity of dP-containing oligonucleotides was similar to those of unmodified oligonucleotides. Results indicated that dP may direct incorporation of guanine and adenine at a ratio of 1:20 or more in vivo. An oligonucleotide containing the photoproduct showed the transforming activity of as low as 3-5% of that of the corresponding unmodified oligonucleotide. This bypass absolutely required REV1 gene. The sequence analysis of the transformants has shown that the lesion was read as TT and TC at a ratio of 3:7, indicating its high mutagenic potential.  相似文献   

15.
Efficient synthesis of a dithymidine dinucleotide analog bearing a diisopropylsilyl linkage instead of a phosphodiester linkage is described with respect to its incorporation into oligonucleotides. The diisopropylsilyl linkage was introduced into the oligonucleotide by preparation of the phosphoramidite derivative of a dithymidine dimer unit. The diisopropylsilyl-modified oligonucleotide exhibited hybridization behavior with both single strand and duplex DNA. The thermal stability of both the duplex and triplex showed a relative instability compared to the corresponding natural phosphodiester DNA, because of the steric hindrance of the isopropyl group on the silicon atom.  相似文献   

16.
An antisense oligonucleotide is expected as an innovative drug for cancer and hereditary diseases. In this paper, we designed and synthesized DNAs containing a novel nucleoside analog, 1-(4-C-aminomethyl-2-deoxy-2-fluoro-β-d-arabinofuranosyl)thymine, and evaluated their properties. It was revealed that the analog slightly decreases the thermal stability of the DNA/RNA duplex but significantly increases the stability of DNA in a buffer containing bovine serum. Furthermore, it turned out that the DNA/RNA duplex containing the analog is a good substrate for Escherichia coli RNase H. Thus, DNAs containing the nucleoside analog would be good candidates for the development of therapeutic antisense oligonucleotides.  相似文献   

17.
Rotation of a heterocyclic base around a glycosidic bond allows the formation of syn and anti conformations in nucleosides. The syn conformation has been observed primarily in purine-purine mismatches in DNA duplexes. Such mismatches give rise to false positive oligonucleotide hybridization in DNA-based diagnostics. Here we describe the synthesis of an analog of 2'-deoxyadenosine that retains its Watson-Crick functional groups, but cannot form the syn conformation. In this analog, the N3 atom of 2'-deoxyadenosine is replaced by a C-CH3 group to give 7-methyl-1-beta-D-deoxyribofuranosyl-1H-imidazo[4,5-c]pyridin-4-ylamine or 3-methyl-3-deaza-2'-deoxyadenosine (3mddA). This modification sterically prevents the syn conformation and 3mddA becomes an anti-fixed nucleoside analog of 2'-deoxyadenosine. The synthesis and conformational analysis of 3mddA and several analogs with an 3H-imidazo[4,5-c]pyridine skeleton are described, as well as their potential applications.  相似文献   

18.
Synthesis and application of derivatizable oligonucleotides.   总被引:7,自引:5,他引:2       下载免费PDF全文
  相似文献   

19.
DNA polymerase alpha was studied in a direct gap-filling assay. Using a defined template, DNA synthesis was primed from the M13 17-mer universal primer and blocked by an oligonucleotide hybridized 56 nucleotides downstream of the primer. DNA polymerase alpha filled this gap to completion. A time course of the reaction showed that in 50% of the substrate molecules, gaps were filled to completion within 10 min. In another 35% of the molecules the final nucleotide was lacking after 10 min. This nucleotide was added at a reduced rate, and was not incorporated into all of the molecules even after 6 h. The reduced rate of incorporation of the final nucleotide is reflected in an increased Km for de novo incorporation of one nucleotide at a single nucleotide gap (0.7 microM), as opposed to the Km for de novo incorporation of one nucleotide into singly primed M13 DNA (0.18 microM). DNA polymerase alpha purified from murine cells infected with the parvovirus minute virus of mice, and HeLa cell DNA polymerase alpha 2, exhibited the same kinetics of gap filling as did DNA polymerase alpha purified from uninfected Ehrlich ascites murine tumor cells. T4 DNA polymerase filled gaps to completion in this assay. Escherichia coli DNA polymerase I Klenow fragment quantitatively displaced the downstream oligonucleotide, and extended nascent DNA chains for an additional 100 nucleotides. Nicks and single-nucleotide gaps produced in gap-filling reactions by murine DNA polymerase alpha and T4 DNA polymerase were sealed by T4 DNA ligase.  相似文献   

20.
T Horn  C A Chang    M S Urdea 《Nucleic acids research》1997,25(23):4842-4849
The divergent synthesis of bDNA structures is described. This new type of branched DNA contains one unique oligonucleotide, the primary sequence, covalently attached through a comb-like branching network to many identical copies of a different oligonucleotide, the secondary sequence. The bDNA comb molecules were assembled on a solid support using parameters optimized for bDNA synthesis. The chemistry was used to synthesize bDNA comb molecules containing 15 secondary sequences. The bDNA comb molecules were elaborated by enzymatic ligation into branched amplification multimers, large bDNA molecules (a total of 1068 nt) containing an average of 36 repeated DNA oligomer sequences, each capable of hybridizing specifically to an alkaline phosphatase-labeled oligonucleotide. The bDNA comb molecules were characterized by electrophoretic methods and by controlled cleavage at periodate-cleavable moieties incorporated during synthesis. The branched amplification multimers have been used as signal amplifiers in nucleic acid quantification assays for detection of viral infection. It is possible to detect as few as 50 molecules with bDNA technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号