首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary Plasmodesmata mediate intercellular transport of proteins, nucleic acids, and small molecules in plants. We show that transiently produced green-fluorescent protein (GFP) trafficked intercellularly in the epidermis of sink leaves, but not of source leaves, in tobacco and cucumber. In contrast, the protein did not traffic in either sink or source leaves of tomato. On the other hand, the protein spread extensively from cell to cell in the epidermis of all leaves and stems ofArabidopsis thaliana as well as in young hypocotyls and cotyledons of tomato and cucumber. GFP could traffic from epidermis to ground tissues in hypocotyls but not in cotyledons of cucumber. GFP fused to a number of mutant forms of the cucumber mosaic virus 3a movement protein (CMV 3a MP) failed to traffic from cell to cell, suggesting that GFP does not have a specific motif for plasmodesmal trafficking. Our data, together with previous findings, indicate that plasmodesmata can mediate both specific and nonspecific intercellular trafficking of proteins. Furthermore, our data suggest that nonspecific protein trafficking is controlled by species-, development-, organ-, and tissue-specific factors. Since GFP can readily traffic from cell to cell, it raises the questions of how metabolites are compartmentalized intercellularly in a plant and of whether some endogenous plant proteins traffic nonspecifically from cell to cell to perform physiological functions yet to be elucidated.Abbreviations CMV cucumber mosaic virus - GFP green-fluorescent protein - MP movement protein - SEL size exclusion limit  相似文献   

3.
Summary Influence of growth regulators during initiation ofMimosa tenuiflora calli tissue varied according to explant source. KN (Kinetin) affected hypocotyls, while an interaction between different combinations of 2,41) (2,4 dichlorophenoxyacetic acid) and KN induced cotyledons,stems and leaves. Calli growth after 60 days was influenced by both hormones in cotyledons, by 2,4D in hypocotils and by an interaction of the two regulators in stems and leaves. The indole alkaloid Nb-Nb dimethyltryptamine was found to be present in some cultures at a level comparable to that of the source plant.  相似文献   

4.
The distribution and biosynthesis of indole-3-acetic acid (IAA) was investigated during early plant development in Arabidopsis. The youngest leaves analysed, less than 0.5 mm in length, contained 250 pg mg(-1) of IAA and also exhibited the highest relative capacity to synthesize this hormone. A decrease of nearly one hundred-fold in IAA content occurred as the young leaves expanded to their full size, and this was accompanied by a clear shift in both pool size and IAA synthesis capacity. The correlation between high IAA content and intense cell division was further verified in tobacco leaves, where a detailed analysis revealed that dividing mesophyll tissue contained ten-fold higher IAA levels than tissue growing solely by elongation. We demonstrated that all parts of the young Arabidopsis plant can potentially contribute to the auxin needed for growth and development, as not only young leaves, but also all other parts of the plant such as cotyledons, expanding leaves and root tissues have the capacity to synthesize IAA de novo. We also observed that naphthylphthalamic acid (NPA) treatment induced tissue-dependent feedback inhibition of IAA biosynthesis in expanding leaves and cotyledons, but intriguingly not in young leaves or in the root system. This observation supports the hypothesis that there is a sophisticated tissue-specific regulatory mechanism for auxin biosynthesis. Finally, a strict requirement for maintaining the pool sizes of IAA was revealed as reductions in leaf expansion followed both decreases and increases in the IAA levels in developing leaves. This indicates that leaves are not only important sources for IAA synthesis, but that normal leaf expansion depends on rigorous control of IAA homeostasis.  相似文献   

5.
A lipoxygenase L-4 gene was isolated from a soybean genomiclibrary. The amino acid sequence of lipoxygenase L-4 is highlyhomologous with the partial amino acid sequence of the 94-kDavegetative storage protein, vsp94, found in paraveinal mesophyllcells in the leaves of depodded soybean plants. No L-4 expressionwas observed in maturing seeds. The L-4 gene is highly expressedin the vegetative tissues of young seedlings, including cotyledons,hypocotyls, roots and primary leaves. L-4 expression followedthe same pattern as lipoxygenase activity in cotyledons peaking3 to 5 days after germination, and returning to a basal levelby 9 days after germination. L-4 gene expression was low inthe roots, stems and leaves of 10-week-old plants. Exposureof 4-week-old plants to atmospheric methyl jasmonate increasedL-4 mRNA in leaves. Continuous pod removal from 7-week-old plantsover a 2 week period resulted in dramatic accumulation of L-4mRNA in leaves. Accumulation of the L-4 protein and three otherlipoxygenase fractions in the leaves of depodded plants wasdemonstrated by ion exchange chromatography. These results indicatethat lipoxygenase L-4 is a component of vsp94. (Received May 31, 1993; Accepted August 9, 1993)  相似文献   

6.
A plasma membrane-enriched fraction was isolated from various tissues of developing lima bean seedlings, Phaseolus lunatus var Cangreen, to study β-1,3-glucan synthase activity changes. All tissues contained an active β-glucan synthase, including the cotyledons that will be senescent in mature lima bean plants. Young primary leaves exhibited a very active β-glucan synthase; but this activity dropped markedly, about fivefold, as the leaves gained weight and became photosynthetic. Some tissues, such as the hypocotyl and young stem, exhibited an increase in β-glucan synthase activity as the tissues were growing and a decrease as the growth rate slowed. Roots exhibited a high activity early in development that only decreased slightly, about 30%, as root growth increased. Surprisingly the senescent cotyledons contained an activity equivalent to some other tissues that was maintained over our measurement time of 21 days. Perhaps this callose synthesis activity is related to translocation processes as the cotyledons transfer their reserves to the growing seedling. We concluded that β-glucan synthase was not a good indicator of sink strength in these lima bean tissues. The plasma membrane fractions also were tested for other enzymes that might be present because an electron microscope study revealed a low contamination by other types of membranes. The membrane fractions had low but detectable activities of sucrose synthase, UDPglucose pyrophosphorylase, UDPase, alkaline invertase, and a general phosphatase; but these enzymes exhibited no consistent pattern(s) of activity change with plant development.  相似文献   

7.
Both methyl jasmonate (MJ) and ethylene have been implicated in promoting senescence, but the specific roles of each and the mechanisms by which they act are not well known. We tested the possibility that MJ and ethylene interact to promote senescence. In sunflower seedlings, the ability of MJ to affect ethylene metabolism was investigated in hypocotyls, cotyledons, and leaves. 1-aminocylcopropane-1-carboxylic acid (ACC)-dependent ethylene production was promoted to different extents depending on the organ and the age of the tissue. Newly emerged hypocotyls were sensitive to MJ, but became desensitized as the cotyledons emerged. The cotyledons increased and peaked in MJ sensitivity from emergence to the production of the primary leaves. Leaves were found to be somewhat insensitive to MJ treatment compared to cotyledons at all ages tested. In cotyledons, MJ also promoted ACC and ethylene production. However the changes in ACC, and ACC-dependent ethylene production were not directly correlated with those in ethylene production with respect to MJ concentration or tissue age. Moreover, changes in ACC-dependent ethylene production did not correlate with in vitro ACC oxidase activity. We hypothesized that MJ affects ethylene production by increasing the spatial access of ACC to ACC oxidase perhaps through increased membrane permeability. Ethylene was not involved in the MJ-induced loss of chlorophyll. But the breakdown of cell integrity and cell membranes (estimated by monitoring conductivity of the solution that bathed the cotyledons) was greatly and synergistically promoted by the combination of MJ and ethylene. Promotion of membrane breakdown by MJ and ethylene could be inhibited by treatments with ethylene inhibitors (STS or CoCl2), and neither MJ nor ACC treatment alone could induce as much membrane breakdown as both together. We suggest that MJ and ethylene interact to accelerate some aspects of senescence in specific organs for nutrient remobilization for the benefit of the whole plant.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MJ methyl jasmonate - STS silver thiosulphate  相似文献   

8.
Culture of protoplast using cotyledon and hypocotyl as the donor tissue from true potato seedlings (TPSs) of 3 breeding lines (DTO-33, ND 860-2 and BN 9815-3) of Solanum tuberosum L. was studied. The cotyledons and hypocotyls of TPSs just extended were excised and digested in an enzyme solution containing 1 % cellulase and 0. 5 % macerozyme for 17—20 h after vacuum infiltration of the tissue in the solution. The protoplasts were cultured in an improved liquid medium and transferred onto solid media for callus culture and shoot regeneration. Some factors affecting the efficiency of cotyledon and hypocotyl protoplast culture were studied. The results showed that using the cotyledons and hypocotyls as donor tissues for protoplast isolation and culture in potato, the division frequency of protoplast derived cells was significantly higher than that using the leaves and shoot-tips of the test-tube plantlets: the yield and quality of the protoplast from TPSs cultured under continuous high light intensity (3000 Ix) were much higher than the TPSs cultured under low light intensity (1000 Ix), and no intact protoplast was ever obtained from the TPSs cultured in continuous dark condition. Vacuum infiltration of the cotyledon and hypocotyl segments in enzyme solution before digestion increased protoplast yield. The yield of protoplasts from hypocotyl tissue was significantly higher than from the cotyledon, but there was no significant difference in quality between the protoplast derived from the two tissues. The significance, advantages and shortcomings of using the cotyledons and hypocotyls as the donor tissues for isolation and culture of potato protoplasts are dicussed.  相似文献   

9.
10.
Glutamine synthetase (GS) activity recovered from linear sucrose gradients was associated with the cytosol of cells isolated from etiolated soybean hypocotyls whereas light-grown tissue contained increased GS activity localized in both the cytosol and chloroplasts. DEAE-cellulose chromatography indicated two GS isoforms in etiolated hypocotyls whereas light-grown hypocotyls and primary leaves contained four isoforms. Only one GS isoform was recovered from both etiolated and light-grown cotyledons.  相似文献   

11.
Treatment of different plant materials, seeds of Phaseolus vulgaris, Zea mays and Pinus silvestris and young plants of Phaseolus, with kinetin increased the level of extractable IAA. For seeds this increase was most pronounced in bean seeds, which contained the lowest amount of endogenous IAA and cytokinins, and lower in maize seeds with high endogenous content of IAA and cytokinins. – For young bean plants the kinetin treatment significantly increased the extractable amounts of IAA from all parts of the plant, hypocotyls, cotyledons, epicotyls and primary leaves, when the cut plants were placed for 24 h in kinetin solution. For plants sprayed with kinetin solution only the primary leaves showed a significantly higher level of extractable IAA, which could be explained by the fact that the plants were growing very close together, so that the primary leaves received most of the kinetin during spraying.  相似文献   

12.
Varying the position of stem inoculation, the concentration of inoculum and the age of plant affected the reaction of cotton, Gossypium sp., to infection with Xanthomonas malvacearum (E. F. Sm.) Dowson.
The extent of stem discoloration, internal and external, and the probability of disease ocurring in leaves by bacteria moving within the plant increased ( a ) the nearer the point of stem inoculation was to the apex, and ( b ) the higher the concentration of inoculum. The leaf symptoms were not the angular spots typical of primary leaf infection. Instead, bacteria seemed to lodge in, discolour and blacken sections of leaf veins. Then tissue next to the affected veins became water-soaked and leaf sectors dependent upon these veins died and dried. These symptoms usually developed 14 to 55 days after inoculation in the expanding leaves.
The amounts of stem discoloration and the probabilities of leaf symptoms developing were less when hypocotyls of old plants were inoculated than when hypocotyls of young plants were inoculated. The probabilities of leaf symptoms developing were similar, however, when young tissues in young and old plants were inoculated.
American cotton, Gossypium hirsutum , was less affected by stem inoculation than Egyptian cotton, G. barbadense. Of the resistance factors against primary leaf infection only B6m gave appreciable stem resistance.  相似文献   

13.
Peanut lectin was purified from seed meal of the Spanish and Jumbo Virginia varieties of peanut (Arachis hypogaea L.) by affinity chromatography on lactose coupled to Sepharose 4B. Polyacrylamide gel isoelectric focusing resolved the lectin preparation from Jumbo Virginia seeds into seven isolectins (pI 5.7, 5.9, 6.0, 6.2, 6.3, 6.5, and 6.7). Seed meal from the Spanish variety contained six isolectins which were indistinguishable from the pI 5.7, 5.9, 6.2, 6.3, 6.5, and 6.7 isolectins from Jumbo Virginia. Quantitative, lactose-specific hemagglutination was used to examine the lectins in tissues of both peanut varieties. In young (3- to 9-day-old) seedlings of each variety, more than 90% of the total amount of lectins detected in the plants was in the cotyledons. Most of the remainder was in hypocotyls, stems, and leaves; young roots contained no more than 4 micrograms of lectin per plant. Lectins were present in all nonroot tissues of 21- to 30-day-old seedlings, except 27-day-old Spanish hypocotyls. As cotyledons of each variety senesced, several of the more basic isolectins decreased to undetectable levels, but the acidic isolectins remained until at least 15 days after planting. Some of the seed isolectins and several apparently new lactose-binding lectins were also identified in affinity-purified extracts of 5-day-old roots and hypocotyls. Rabbit antibodies raised against the Jumbo Virginia seed isolectin preparation reacted with seed, cotyledon, and hypocotyl lectin preparations from both varieties. Analysis of seed lectin preparations from seven varieties of A. hypogaea and of a related species (A. villosulicarpa) indicated that isolectin composition in Arachis may be a characteristic of both the species and the subspecies (botanical type) to which the variety belongs.  相似文献   

14.
15.
Explants of cotton (Gossypium hirsutum L. cv. Jingmian 7) were transformed with Agrobacterium tumefaciens (Smith et Townsend ) Conn LBA4404 harboring an expression cassette composed of CoYMV (Commelina Yellow Mottle Virus) promoter-gus-nos terminator on the plant expression vector pBcopd2. Transgenic plants were regenerated and selected on a medium containing kanamycin. GUS (β-glucuronidase) activity assays and Southern blot analysis confirmed that the chimerical gus gene was integrated into and expressed in the regenerated cotton plants. Plant expression vector pBI121 was also transferred into the same cotton variety and the regenerated transgenic plants were used as a positive control in GUS activity analysis. Evidences from histochemical analysis of GUS activity demonstrated that under the control of a 597 bp CoYMV promoter the gus gene was highly expressed in the vascular tissues of leaves, petioles, stems, roots, hypocotyls, bracteal leaves and most of the flower parts while GUS activity could not be detected in stigma, anther sac and developing cotton fibers of the transgenic cotton plants. GUS specific activity in various organs and tissues from transgenic cotton lines was determined and the results indicated that the CoYMV promoter-gus activities were at the same level or higher than that of CaMV 35S promoter-gus in leaf veins and roots where the vascular tissues occupy a relatively larger part of the organs, but in other organs like leaves, cotyledons and hypocotyls where the vascular tissues occupy a smaller part of the organs the CoYMV promoter-gus activity was only 1/3-1/5 of the CaMV 35S promoter-gus activity. The GUS activity ratio between veins and leaves was averaged 0.5 for 35S-GUS plants and about 2.0 for CoYMV promoter-gus transgenic plants. These results further demonstrated the vascular specific property of the promoter in transgenic cotton plants. An increasing trend of GUS activity in leaf vascular tissues of transgenic cotton plants developing from young to older was observed.  相似文献   

16.
Shoot regeneration via organogenesis was achieved from axenic cowpea [Vigna unguiculata subsp. unguiculata L. (Walp.) Verde.] hypocotyls and cotyledons of advanced breeding lines and varieties. Cotyledons and embryos were excised from green immature pods. The apical parts of the embryos were removed and the hypocotyls were transferred to regeneration media. Cotyledons and hypocotyls were tested on media with gradients of several hormonal and putrescine combinations. Cowpea cotyledons and hypocotyls exhibited a pattern of shoot formation that occurred in three distinct phases. Multiple shoots developed within 45 days from the wounded region of the primary hypocotyl and cotyledons in different media containing a high cytokinin concentration. The induced plant explants were then grown for 20 days in low-intensity light (10 μmol m–2 s–1) on the same medium and numerous shoot buds emerged de novo from the upper part of the hypocotyl and the wounded part of the cotyledons. These buds had no apparent vascular connection with the parent tissues. The plant regeneration capability of this procedure was tested with several cowpea genotypes, five of which (83D-442, 86D-1010, 93K-624, Vita 3 and Ife Brown) responded positively with shoot development and were able to form roots and whole plants. Some somaclonal variation was observed. Received: 14 June 1996 / Revision received: 14 December 1996 / Accepted: 25 January 1997  相似文献   

17.
The possibility of uptake of salmonellae by roots of hydroponically grown tomato plants was investigated. Within 1 day of exposure of plant roots to Hoagland nutrient solution containing 4.46 to 4.65 log(10) CFU of salmonellae/ml, the sizes of the pathogen populations were 3.01 CFU/g of hypocotyls and cotyledons and 3.40 log(10) CFU/g of stems for plants with intact root systems (control) and 2.55 log(10) CFU/g of hypocotyls and cotyledons for plants from which portions of the roots had been removed. A population of > or =3.38 log(10) CFU/g of hypocotyls-cotyledons, stems, and leaves of plants grown for 9 days was detected regardless of the root condition. Additional studies need to be done to unequivocally demonstrate that salmonellae can exist as endophytes in tomato plants grown under conditions that simulate commonly used agronomic practices.  相似文献   

18.
The jasmonates, which include jasmonic acid and its methyl ester (MJ), play a central role in regulating the biosynthesis of many secondary metabolites, including flavonoids, and also are signaling molecules in environmental stresses. Synthesis of anthocyanins pigments is a final part of flavonoids pathway route. Accumulation of the pigments in young seedlings is stimulated by various environmental stresses, such as high-intensity light, wounding, pathogen attack, drought, sugar and nutrient deficiency. The anthocyanins take part in defense system against excess of light and UV-B light, and therefore it is probably main reason why young plant tissues accumulate enlarged levels of the pigments. The effects of exogenously applied MJ on level of anthocyanins, glycosides of apigenin, luteolin, quercetin and proanthocyanidins in seedlings of common buckwheat (Fagopyrum esculentum Moench) were studied. MJ decreased contents of all the found cyanidin glycosides and its aglycone in hypocotyls of buckwheat seedlings. However contents of particular anthocyanins in cotyledons of buckwheat seedlings treated with the plant hormone were not significantly different from the control. Applied doses of MJ did not affect levels of quercetin, apigenin and luteolin glycosides in the analyzed parts of buckwheat seedlings: cotyledons and hypocotyls. On the other hand, treatment of buckwheat seedlings with MJ clearly stimulated of proanthocyanidins biosynthesis in hypocotyls. We suggest that methyl jasmonate induces in hypocotyls of buckwheat seedlings the leucocyanidin reductase or anthocyanidin reductase, possible enzymes in proanthocyanidins synthesis, and/or inhibits anthocyanidin synthase, which transforms leucocyanidin into cyanidin. According to our knowledge this is the first report regarding the effect of methyl jasmonate on enhancing the accumulation of proanthocyanidins in cultivated plants.  相似文献   

19.
20.
The anatomical localization of caffeine within young Camellia sinensis leaves was investigated using immunohistochemical methods and confocal scanning laser microscopy. Preliminary fixation experiments were conducted with young C. sinensis leaves to determine which fixation procedure retained caffeine the best as determined by high-performance liquid chromatography analysis. High pressure freezing, freeze substitution, and embedding in resin was deemed the best protocol as it retained most of the caffeine and allowed for the samples to be sectioned with ease. Immunohistochemical localization with primary anti-caffeine antibodies and conjugated secondary antibodies on leaf sections proved at the tissue level that caffeine was localized and accumulated within vascular bundles, mainly the precursor phloem. With the use of a pressure bomb, xylem sap was collected using a micro syringe. The xylem sap was analyzed by thin-layer chromatography and the presence of caffeine was determined. We hypothesize that caffeine is synthesized in the chloroplasts of photosynthetic cells and transported to vascular bundles where it acts as a chemical defense against various pathogens and predators. Complex formation of caffeine with chlorogenic acid is also discussed as this may also help explain caffeine’s localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号