首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two lectins with specificities for mannose and fucose have been isolated from human serum by affinity chromatography. One mannose-binding protein (MBP 1) has a native Mr of 700,000 with subunits of Mr 32,000 and has specificities for N-acetylglucosamine, N-acetylmannosamine and glucose as well as for mannose and fucose. The other mannose-binding protein (MBP 2) has a native Mr of 200,000 with subunits of Mr 28,000 and is specific only for mannose and fucose. MBP 2 appears to recognize the core sugars of asparagine-linked oligosaccharides as well as the terminal sugars. Both lectins are calcium-dependent, requiring approx. 0.095 mM calcium for half-maximal binding. MBP 1 binds maximally between pH 7-9, whereas MBP 2 has a pH optimum of 6-7. The binding activity of both proteins decreases rapidly below pH 5. The apparent association constants (Ka) for binding to mannon are 2.1 X 10(8) M-1 for MBP 1 and 1.3 X 10(8) M-1 for MBP 2. These data provide further evidence of the complex nature of mammalian carbohydrate recognition systems.  相似文献   

2.
A lectin was isolated from Ulex europaeus seeds by affinity chromatography on affinity adsorbent prepared by copolymerization of acrylamide, N,N'-methylene bisacrylamide and maleylated hog stomach peptone. The lectin is homogeneous as judged by ultracentrifugation (s20,w = 6.4 S), electrophoretic and gel chromatography criteria; it contains 4.2% neutral sugar and 1.4% glucosamine. Its molecular weight is approx. 110,000 and the molecule consists of two noncovalently linked protomers which are formed by two covalently bound basic subunits (Mr = 30,000). The preparation contains three isolectins differing in the strength of interaction with specific sugars (cellobiose, N-acetyl-D-glucosamine) under the conditions of affinity electrophoresis. The lectin is non-specific with human ABO blood group system, the agglutination is inhibited by partial chitin hydrolysate, hog stomach peptone and high concentration of cellobiose.  相似文献   

3.
A lectin in the fruiting bodies of Psathyrella velutina was purified by affinity chromatography on a chitin column and subsequent ion-exchange chromatography. P. velutina lectin (PVL) tends to aggregate irreversibly in buffered saline, but the addition of glycerol (10%, v/v) to lectin solutions was found to prevent aggregate formation. PVL is assumed to occur as a monomer of a polypeptide of Mr = 40,000 as determined by gel filtration and by gel electrophoresis in the presence of sodium dodecyl sulfate. PVL is specific for N-acetylglucosamine (GlcNAc). It was determined by equilibrium dialysis to have four binding sites/polypeptide molecule showing an average intrinsic association constant of K0 = 6.4 x 10(3) M-1 toward this sugar. The binding specificity of the lectin was studied by hemagglutination inhibition assays and by avidin-biotin-mediated enzyme immunoassays using various GlcNAc-containing saccharides. The results indicate that methyl N-acetyl beta-glucosaminide was a slightly better inhibitor than the corresponding alpha-anomer. PVL binds well to oligosaccharides bearing nonreducing terminal beta-GlcNAc linked 1----6 or 1----3 but poorly to those having a 1----4 linkage, such as N-acetylated chito-oligosaccharides. It also binds to the subterminal GlcNAc moiety when it is substituted at the C-6 position but does not interact with the moiety when substituted either at C-3 or C-4. Thus, these results show that PVL is quite different in its binding specificity from other GlcNAc-binding lectins of higher plants since they bind preferentially to beta-GlcNAc in 1----4 linkage and they have a high affinity for chitin oligosaccharides.  相似文献   

4.
Carbohydrate binding specificity of a lectin, allo A, isolated from a beetle (Allomyrina dichotoma), was investigated by means of lectin affinity chromatography. Sialylated complex-type and hybrid-type oligosaccharides/glycopeptides, and sialyllactose were retained by the column, whereas desialylated ones were retarded but not retained by the column. The association constants of allo A for biantennary oligosaccharides from human serum transferrin, determined by frontal analysis, were 8.0 X 10(5) M-1, 4.5 X 10(5) M-1, and 2.5 X 10(5) M-1 for disialo-, monosialo-, and asialo-oligosaccharides, respectively. Removal of the beta-galactose residues markedly reduced the association constant to 3.5 X 10(3) M-1. Furthermore, allo A was found to have no affinity for mucin-type glycopeptides carrying the sialylated Gal beta 1----3 GalNAc sugar sequence (Ka: 3.5 X 10(3) M-1). The results of this study indicated that allo A strongly binds to the trisaccharide structure, NeuAc alpha 2-3(6)Gal-beta 1-4GlcNAc, and that its binding potency is affected by the inner core structures of oligosaccharides and glycopeptides, because the presence of a bisecting N-acetyl-glucosamine residue and an alpha-fucose residue linked to the innermost N-acetylglucosamine residue reduced the association constants for oligosaccharides and glycopeptides.  相似文献   

5.
The binding affinity and specificity of the mushroom Polyporus squamosus lectin has been determined by the recently developed method of frontal affinity chromatography coupled to electrospray mass spectrometry (FAC/MS). A micro-scale affinity column was prepared by immobilizing the lectin ( approximately 25 microg) onto porous glass beads in a tubing column (9.8 microl column volume). The column was then used to screen several oligosaccharide mixtures. The dissociation constants of 22 sialylated or sulfated oligosaccharides were evaluated against the immobilized lectin. The lectin was found to be highly specific for Neu5Acalpha2-6Galbeta1-4Glc/GlcNAc containing oligosaccharides with K(d) values near 10 microM. The FAC/MS assay permits the rapid determination of the dissociation constants of ligands as well as a higher throughput screening of compound mixtures, making it a valuable tool for affinity studies, especially for testing large numbers of compounds.  相似文献   

6.
CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity.  相似文献   

7.
Carbohydrate-binding specificity of pokeweed mitogens   总被引:1,自引:0,他引:1  
The carbohydrate-binding specificity of two pokeweed (Phytolacca americana) mitogens (Pa-1 and Pa-2) was investigated by means of hemagglutination inhibition assays and the quantitative inhibition of the binding of 125I-labeled lectins to human erythrocytes using various oligosaccharides, glycopeptides and glycoproteins as hapten inhibitors. Among the inhibitors employed in this study, chitin oligosaccharides and the glycopeptides and glycoproteins which bear sugar chains of the type found in serum glycoproteins, particularly PAS-1 glycoprotein and band-3 glycoprotein of human erythrocyte membranes, exerted strong inhibitory activity. The inhibitory constants of band-3 glycoprotein toward the binding of both mitogens to human erythrocytes were found to be very close to the association constants of the mitogens to the cells. Furthermore, the results of competitive binding studies between Pa-1 and Pa-2 indicated that these mitogens share a common oligosaccharide chains on the erythrocyte surface. To isolate the membrane receptors for these two mitogens, the solubilized membranes of human erythrocytes were subjected to affinity chromatographies using Pa-1-Sepharose 4B and Pa-2-Sepharose 4B as specific adsorbents. In both cases of these two specific adsorbents, band-3 glycoprotein was found to bind most strongly. These results suggest that two pokeweed mitogens have essentially the same carbohydrate-binding specificity and they bind primarily to the sugar chains of band-3 glycoprotein, possibly to the core structure of the sugar chains containing a di-N-acetylchitobiose moiety, on human erythrocytes.  相似文献   

8.
A basic lectin (pI approximately 10.0) was purified to homogeneity from the seeds of winged bean (Psophocarpus tetragonolobus) by affinity chromatography on Sepharose 6-aminocaproyl-D-galactosamine. The lectin agglutinated trypsinized rabbit erythrocytes and had a relative molecular mass of 58,000 consisting of two subunits of Mr 29,000. The lectin binds to N-dansylgalactosamine, leading to a 15-fold increase in dansyl fluorescence with a concomitant 25-nm blue shift in the emission maximum. The lectin has two binding sites/dimer for this sugar and an association constant of 4.17 X 10(5) M-1 at 25 degrees C. The strong binding to N-dansylgalactosamine is due to a relatively positive entropic contribution as revealed by the thermodynamic parameters: delta H = -33.62 kJ mol-1 and delta S0 = -5.24 J mol-1 K-1. Binding of this sugar to the lectin shows that it can accommodate a large hydrophobic substituent on the C-2 carbon of D-galactose. Studies with other sugars indicate that a hydrophobic substituent in alpha-conformation at the anomeric position increases the affinity of binding. The C-4 and C-6 hydroxyl groups are critical for sugar binding to this lectin. Lectin difference absorption spectra in the presence of N-acetylgalactosamine indicate perturbation of tryptophan residues on sugar binding. The results of stopped flow kinetics with N-dansylgalactosamine and the lectin are consistent with a simple one-step mechanism for which k+1 = 1.33 X 10(4) M-1 s-1 and k-1 = 3.2 X 10(-2) s-1 at 25 degrees C. This k-1 is slower than any reported for a lectin-monosaccharide complex so far. The activation parameters indicate an enthalpically controlled association process.  相似文献   

9.
采用已知结构的多糖,控制其水解条件,使之产生所需寡糖片断。用聚丙烯酰胺凝胶色谱(BiO-6el P-4)分离,对中性糖可以分离到含十一个糖残基的寡糖。对氨基糖可分离到含七个糖残基的寡糖。用薄层色谱和快原子轰击质谱鉴定了它们的纯度。  相似文献   

10.
This study used a combination of zonal elution and frontal affinity chromatography on immobilized human serum albumin (HSA) high-performance affinity chromatography (HPAC) column to examine the association constants of various compounds that have been studied by equilibrium dialysis or ultra filtration. A standard plot was generated from retention factors of reference compounds using zonal elution chromatography against association constants of reference compounds using frontal affinity chromatography. The linear relationship was established (r2=0.9993) between retention factors and association constants of reference compounds. This standard plot was later used for rapid determination of association constants of various drugs which show low to medium binding affinity to HSA. Association constants of those drugs from this study were compared to that of more generally used methods (i.e., equilibrium dialysis or ultra filtration) from literature and resulted in a relatively high correlation (r2=0.945) value. This combination of zonal elution and frontal affinity chromatography method for determining association constants showed several advantages against traditional methods. Depending on drugs of interest, an association constant of drug to HSA can be measured as fast as 1.5 min. Other notable advantages include an ease of automation and its ability to distinguish association constants of chiral compounds at the same time. The same approach could be used for studying interaction of other drugs and proteins and should further improve overall drug screening process.  相似文献   

11.
The interaction of a synthetically prepared mutant peptide of hevein (a well known chitin-binding lectin) Hev32S19D with chitin oligosaccharides (and chitosan analogues) has allowed us to estimate their affinity constants and associated thermodynamic data. The mutant peptide is able to bind chitin oligomers, but with significant decreases in the association constants with chito-oligosaccharides. The determination of the three-dimensional structure of the peptide mutant, by using NMR, has permitted us to deduce that the topology of the backbone is very similar to that of the parent Hev32 peptide. The same is true regarding the orientations of the key aromatic residues Trp21, Trp23, and Tyr30. The decrease in the association constants can be attributed to the different topological orientation of key side chains and to the importance of protein-sugar intermolecular essential hydrogen bonds and CH-π stacking interactions. The analysis has permitted us to infer the free energy of binding associated with these interactions as well as to estimate the corresponding binding enthalpy.  相似文献   

12.
A new D-mannose/D-glucose-specific lectin (B-SJA-II) was isolated from the bark of the Japanese pagoda tree, Sophora japonica. B-SJA-II was separated from a well known D-galactose/N-acetyl-D-galactosamine-specific lectin (B-SJA-I) by affinity chromatography on lactamyl-Sepharose, then purified by affinity chromatography on maltamyl-Sepharose. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, B-SJA-II gave four bands: subunit a-1 (Mr = 19,400), a-2 (Mr = 18,200), b-1 (Mr = 15,000), and b-2 (Mr = 13,200). Carbohydrate analysis and binding study with horseradish peroxidase-labeled lectins on the bands electroblotted onto polyvinylidene difluoride membrane showed that the three subunits other than b-2 have N-linked oligosaccharides typical of plant glycoproteins. The binding assay with horseradish peroxidase-glycoproteins revealed that all the subunits can bind sugar specifically with fetuin and asialofetuin. Furthermore, B-SJA-II aggregated to form precipitates in the absence of a specific sugar and became soluble upon addition of the specific sugar. The results indicate that each subunit has a sugar-binding site for the mannosyl core of N-linked oligosaccharide chains and recognizes each other sugar specifically to form aggregates. According to the N-terminal amino acid sequences obtained, the subunits are classified into two groups. The first group (a-1 and a-2) has an N-terminal sequence 50% identical with that of other S. japonica lectins (Hankins, C. N., Kindinger, J. I., and Shannon, L. M. (1988) Plant Physiol. 86, 67-70) and the amino acid sequence initiating at position 123 of concanavalin A (Cunningham, B. (1975) J. Biol. Chem. 250, 1503-1512), while the N-terminal sequence of the second group (b-1 and b-2) is homologous to that of concanavalin A, but completely different from that of the first group.  相似文献   

13.
Plasma membrane glycoproteins of rat hepatocytes undergo a rapid terminal deglycosylation in that the terminal sugars of the oligosaccharide side chains are rapidly removed from the otherwise intact glycoproteins [Tauber, R., Park, C.S. & Reutter, W. (1983) Proc. Natl Acad. Sci. USA 80, 4026-4029]. The present paper demonstrates that this rapid intramolecular turnover of plasma membrane glycoproteins is not restricted to peripheral sugars but, in contrast to liver, in hepatoma the core sugars of the oligosaccharide chains are also involved. Intramolecular turnover was measured in Morris hepatoma 7777 in five plasma membrane glycoproteins with Mr of 85,000 (hgp85), 105,000 (hgp105), 115,000 (hgp115), 125,000 (hgp125), 175,000 (hgp175) (hgp = hepatoma glycoprotein) that were isolated and purified to homogeneity by concanavalin-A--Sepharose affinity chromatography and semipreparative SDS gel electrophoresis. Analysis of the carbohydrates of hgp85, hgp105, hgp115 and hgp125 revealed the presence of N-linked oligosaccharides containing L-fucose, D-galactose, D-mannose and N-acetyl-D-glucosamine, but only of trace amounts of N-acetyl-D-galactosamine; hgp175 additionally contained significant amounts of N-acetyl-D-galactosamine, indicating the presence of both N- and O-linked oligosaccharides. As shown by digestion with endoglucosaminidase H, the N-linked oligosaccharides of hgp105, hgp115, hgp125 and hgp175 were of the complex type, whereas hgp85 also contained oligosaccharides of the high-mannose type. Half-lives of the turnover of the oligosacharide chains and of the protein backbone of the five glycoproteins were measured in the plasma membrane in pulse-chase experiments in vivo, using L-[3H]fucose as a marker of terminal sugars, D-[3H]mannose as marker of a core sugar and L-[3H]leucine for labelling the protein backbone. Protein backbones of the five glycoproteins were degraded with individual half-lives ranging over 41-90 h with a mean of 66 h. Compared to the degradation of the polypeptide backbone, both the terminal sugar L-fucose and the core sugar D-mannose turned over with much shorter half-lives averaging about 20 h in the five glycoproteins. The data show that, conversely to liver, within plasma membrane glycoproteins of hepatoma not only peripheral sugars but also core sugars of the oligosaccharides are split off during the life-span of the protein backbone. It may therefore be assumed that this reprocessing of plasma membrane glycoproteins is sensitive to malignant transformation.  相似文献   

14.
The 32-kDa galectin (LEC-1 or N32) of the nematode Caenorhabditis elegans is the first example of a tandem repeat-type galectin and is composed of two domains, each of which is homologous to typical vertebrate 14-kDa-type galectins. To elucidate the biological meaning of this unique structure containing two probable sugar binding sites in one molecule, we analyzed in detail the sugar binding properties of the two domains by using a newly improved frontal affinity chromatography system. The whole molecule (LEC-1), the N-terminal lectin domain (Nh), and the C-terminal lectin domain (Ch) were expressed in Escherichia coli, purified, and immobilized on HiTrap gel agarose columns, and the extent of retardation of various sugars by the columns was measured. To raise the sensitivity of the system, we used 35 different fluorescence-labeled oligosaccharides (pyridylaminated (PA) sugars). All immobilized proteins showed affinity for N-acetyllactosamine-containing N-linked complex-type sugar chains, and the binding was stronger for more branched sugars. Ch showed 2-5-fold stronger binding toward all complex-type sugars compared with Nh. Both Nh and Ch preferred Galbeta1-3GlcNAc to Galbeta1-4GlcNAc. Because the Fucalpha1-2Galbeta1-3GlcNAc (H antigen) structure was found to interact with all immobilized protein columns significantly, the K(d) value of pentasaccharide Fucalpha1-2Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA for each column was determined by analyzing the concentration dependence. Obtained values for immobilized LEC-1, Nh, and Ch were 6.0 x 10(-5), 1.3 x 10(-4), and 6.5 x 10(-5) m, respectively. The most significant difference between Nh and Ch was in their affinity for GalNAcalpha1-3(Fucalpha1-2)Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc-PA, which contains the blood group A antigen; the K(d) value for immobilized Nh was 4.8 x 10(-5) m, and that for Ch was 8.1 x 10(-4) m. The present results clearly indicate that the two sugar binding sites of LEC-1 have different sugar binding properties.  相似文献   

15.
The carbohydrate specificity of three novel lectins, Boletopsis leucomelas lectin (BLL), Aralia cordate lectin (ACL), and Wasabia japonica lectin (WJL), was examined by frontal affinity chromatography using a panel of fluorescently labeled 47 oligosaccharides. The results indicate that BLL recognizes an agalacto structure of the biantennary chain and its bisecting structure. ACL showed strong affinity for triantennary oligosaccharides, but no affinity for tetraantennary structure. WJL showed no appreciable affinity for any of the 47 glycans examined. These lectins with a unique affinity specificity might be useful for examining alterations in the glycan structures of the glycoconjugates in association with development and various diseases.  相似文献   

16.
免疫亲和层析法纯化苦瓜几丁酶   总被引:1,自引:0,他引:1  
用扁豆几丁酶免疫家兔,获得抗扁豆几丁酶的抗体,将此抗体与Sepharose 4B偶联,制备免疫亲和吸附剂,用以纯化苦瓜几丁酶.苦瓜叶片的粗提液经过免疫亲和吸附柱后,可获得电泳纯的几丁酶,其分子量为35 kD,与用几丁质凝胶为亲和吸附剂的纯化结果一致.表明利用植物几丁酶在结构上的保守性,用免疫亲和法可纯化不同植物的同类几丁酶.与几丁质凝胶亲和柱相比,免疫亲和法纯化植物几丁酶具有快速、亲和柱可重复使用等的优点.利用免疫亲和层析获得的纯化样品,研究了苦瓜几丁酶对真菌的抑制试验,研究结果表明,苦瓜几丁酶能分解棉花枯萎病菌的菌丝体细胞壁制备物,并对其孢子芽管的伸长有一定抑制作用.  相似文献   

17.
We have metabolically labeled the human pancreatic tumor cell line PANC-1 with high specific activity tritiated sugar precursors to study the expression of glycosphingolipids by this cell type. We have used a combination of detergent solubilization, exhaustive protease digestion, ceramide glycanase digestion, and reverse-phase chromatography to isolate glycosphingolipid-derived oligosaccharides specifically labeled in their component sugars. A significant proportion of the oligosaccharides derived from polar glycosphingolipids were of high molecular mass (greater than 2000 Da). The results of compositional studies, lectin affinity chromatography, and methylation analysis suggested that this high molecular weight fraction consists of lactosaminoglycan type oligosaccharides derived from polyglycosylceramides. There are on average three beta 1-6 linked N-acetyllactosamine branches attached to the polylactosamine backbone in this type of glycosphingolipid-derived oligosaccharide. The majority of the oligosaccharides also contain 1-2 mol of sialic acid that are linked alpha 2-3 to penultimate galactose. The results indicate that PANC-1 cells, like human colorectal tumor cells, express highly extended neolacto type glycosphingolipids. However, the lactosaminoglycan sequences are highly branched, unlike those associated with colorectal tumor cells.  相似文献   

18.
[3H]Leucine- and [35S]sulfate-labeled proteoheparan sulfates were isolated from postconfluent or proliferating cultures of human skin fibroblasts. Cell layers were solubilized by Triton X-100, and transferrin-binding macromolecules were isolated by affinity chromatography. Proteoglycans with no affinity for transferrin were purified by using ion-exchange and gel permeation chromatography. Postconfluent cells synthesize a proteoheparan sulfate of Mr 350,000 (as determined by gel permeation chromatography) which has affinity for transferrin as well as for octyl-Sepharose. Its core protein (Mr 180,000) consists of two disulfide-bonded polypeptides of Mr 90,000. This species was not detected in cultures of proliferating cells. Proliferating and confluent cells also synthesize other forms of proteoheparan sulfates (Mr 200,000-400,000) which have no affinity for transferrin. However, most of them have affinity for octyl-Sepharose. The core protein of proteoheparan sulfates made by proliferating cells has Mr 50,000. A smaller form (Mr 250,000) of this proteoglycan was solubilized by Triton X-100, whereas a larger form (Mr 400,000) remained associated with the pericellular matrix. A third type of proteoheparan sulfate (Mr 200,000) without affinity for transferrin nor octyl-Sepharose was associated with postconfluent cell layers but not with proliferating ones. Its core protein has Mr 35,000. Heparan sulfate oligosaccharides (Mr 6,000 or higher) were found in proliferating cells but not in postconfluent ones.  相似文献   

19.
Affinity columns prepared by immobilizing monoclonal antibodies that specifically recognize the Lea or the Leb blood group antigens can be used for analytical or preparative isolation of oligosaccharides with the corresponding reactivities. The number of immobilized functional antibody combining sites on a column and the dissociation constants for standard oligosaccharides are determined by frontal analysis. By employing a simple approximation [K.-I. Kasai et al. (1986) J. Chromatogr. 376, 33-47] these parameters can be used to rationally design columns with properties appropriate for zonal affinity chromatography. The affinity for binding of the Lea-active oligosaccharide lacto-N-fucopentaose II (LNF II) by the anti-Lea antibody CO-514 doubles for each 8 degrees C downward shift in temperature between 37 and 4 degrees C. By zonal chromatography, Lea- or Leb-active oligosaccharides are recovered from a complex mixture of milk oligosaccharides containing more than a 20-fold molar excess of structurally similar but antigenically distinct oligosaccharides. The capacity for preparative isolation of an oligosaccharide increases in a linear fashion with the amount of antibody loaded on the solid support. The monoclonal antibodies used in these studies are products of hybridomas derived from mice immunized with human colorectal carcinoma cell lines [M. Blaszczyk et al. (1984) Arch. Biochem. Biophys. 233, 161-168]. The experiments establish that affinity chromatography applied to mixtures of oligosaccharides released by enzymatic or chemical cleavage of glycoconjugates may simplify the task of isolating and characterizing biologically interesting target antigens of monoclonal antibodies.  相似文献   

20.
The carbohydrate specificity of three novel lectins, Boletopsis leucomelas lectin (BLL), Aralia cordate lectin (ACL), and Wasabia japonica lectin (WJL), was examined by frontal affinity chromatography using a panel of fluorescently labeled 47 oligosaccharides. The results indicate that BLL recognizes an agalacto structure of the biantennary chain and its bisecting structure. ACL showed strong affinity for triantennary oligosaccharides, but no affinity for tetraantennary structure. WJL showed no appreciable affinity for any of the 47 glycans examined. These lectins with a unique affinity specificity might be useful for examining alterations in the glycan structures of the glycoconjugates in association with development and various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号