首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ptsHIcrr operon was deleted from Escherichia coli wild-type JM101 to generate strain PB11 (PTS(-)). In a mutant derived from PB11 that partially recovered its growth capacity on glucose by an adaptive evolution process (PB12, PTS(-)Glc(+)), part of the phosphoenolpyruvate not used in glucose transport has been utilized for the synthesis of aromatic compounds. In this report, it is shown that on acetate as a carbon source, PB11 displayed a specific growth rate (mu) higher than PB12 (0.21 and 0.13 h(-1), respectively) while JM101 had a mu of 0.28 h(-1). To understand these growth differences on acetate, we compared the expression profiles of central metabolic genes by RT-PCR analysis. Obtained data revealed that some gluconeogenic genes were downregulated in both PTS(-) strains as compared to JM101, while most glycolytic genes were upregulated in PB12 in contrast to PB11 and JM101. Furthermore, inactivation of gluconeogenic genes, like ppsA, sfcA, and maeB,and poxB gene that codes for pyruvate oxidase, has differential impacts in the acetate metabolism of these strains. Results indicate that growth differences on acetate in the PTS(-) derivatives are due to potential carbon recycling strategies, mainly in PB11, and futile carbon cycles, especially in PB12.  相似文献   

2.
L-phenylalanine (L-Phe) is an aromatic amino acid with diverse commercial applications. Technologies for industrial microbial synthesis of L-Phe using glucose as a starting raw material currently achieve a relatively low conversion yield (Y(Phe/Glc)). The purpose of this work was to study the effect of PTS (phosphotransferase transport system) inactivation and overexpression of different versions of feedback inhibition resistant chorismate mutase-prephenate dehydratase (CM-PDT) on the yield (Y(Phe/Glc)) and productivity of L-Phe synthesized from glucose. The E. coli JM101 strain and its mutant derivative PB12 (PTS(-)Glc(+) phenotype) were used as hosts. PB12 has an inactive PTS, but is capable of transporting and phosphorylating glucose by using an alternative system constituted by galactose permease (GalP) and glucokinase activities (Glk). JM101 and PB12 were transformed with three plasmids, harboring genes that encode for a feedback inhibition resistant DAHP synthase (aroG(fbr)), transketolase (tktA) and either a truncated CM-PDT (pheA(fbr)) or its derived evolved genes (pheA(ev1) or pheA(ev2)). Resting-cells experiments with these engineered strains showed that JM101 and PB12 strains expressing either pheA(ev1) or pheA(ev2) genes produced l-Phe from glucose with Y(Phe/Glc) of 0.21 and 0.33 g/g, corresponding to 38 and 60% of the maximum theoretical yield (0.55 g/g), respectively. In addition, in both engineered strains the reached q(Phe) high levels of 40 mg/g-dcw.h. The metabolic engineering strategy followed in this work, including a strain with an inactive PTS, resulted in a positive impact over the Y(Phe/Glc), enhancing it nearly 57% compared with its PTS(+) counterpart. This is the first report wherein PTS inactivation was a successful strategy to improve the Y(Phe/Glc).  相似文献   

3.
4.
5.
The extension of metabolite balancing with carbon labeling experiments, as described by Marx et al. (Biotechnol. Bioeng. 49: 11-29), results in a much more detailed stationary metabolic flux analysis. As opposed to basic metabolite flux balancing alone, this method enables both flux directions of bidirectional reaction steps to be quantitated. However, the mathematical treatment of carbon labeling systems is much more complicated, because it requires the solution of numerous balance equations that are bilinear with respect to fluxes and fractional labeling. In this study, a universal modeling framework is presented for describing the metabolite and carbon atom flux in a metabolic network. Bidirectional reaction steps are extensively treated and their impact on the system's labeling state is investigated. Various kinds of modeling assumptions, as usually made for metabolic fluxes, are expressed by linear constraint equations. A numerical algorithm for the solution of the resulting linear constrained set of nonlinear equations is developed. The numerical stability problems caused by large bidirectional fluxes are solved by a specially developed transformation method. Finally, the simulation of carbon labeling experiments is facilitated by a flexible software tool for network synthesis. An illustrative simulation study on flux identifiability from available flux and labeling measurements in the cyclic pentose phosphate pathway of a recombinant strain of Zymomonas mobilis concludes this contribution. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 101-117, 1997.  相似文献   

6.
7.
The activity of the enzymes of the central metabolic pathways has been the subject of intensive analysis; however, the Entner-Doudoroff (ED) pathway has only recently begun to attract attention. The metabolic response to edd gene knockout in Escherichia coli JM101 and PTS- Glc+ was investigated in gluconate and glucose batch cultures and compared with other pyruvate kinase and PTS mutants previously constructed. Even though the specific growth rates between the strain carrying the edd gene knockout and its parent JM101 and PTS- Glc+ edd and its parent PTS- Glc+ were very similar, reproducible changes in the specific consumption rates and biomass yields were obtained when grown on glucose. These results support the participation of the ED pathway not only on gluconate metabolism but on other metabolic and biochemical processes in E. coli. Despite that gluconate is a non-PTS carbohydrate, the PTS- Glc+ and derived strains showed important reductions in the specific growth and gluconate consumption rates. Moreover, the overall activity of the ED pathway on gluconate resulted in important increments in PTS- Glc+ and PTS- Glc+ pykF mutants. Additional results obtained with the pykA pykF mutant indicate the important contribution of the pyruvate kinase enzymes to pyruvate synthesis and energy production in both carbon sources.  相似文献   

8.
Metabolic fluxes in the central metabolism were determined for lysine-producing Corynebacterium glutamicum ATCC 21526 with sucrose as a carbon source, providing an insight into molasses-based industrial production processes with this organism. For this purpose, 13C metabolic flux analysis with parallel studies on [1-(13C)Fru]sucrose, [1-(13C)Glc]sucrose, and [13C6Fru]sucrose was carried out. C. glutamicum directed 27.4% of sucrose toward extracellular lysine. The strain exhibited a relatively high flux of 55.7% (normalized to an uptake flux of hexose units of 100%) through the pentose phosphate pathway (PPP). The glucose monomer of sucrose was completely channeled into the PPP. After transient efflux, the fructose residue was mainly taken up by the fructose-specific phosphotransferase system (PTS) and entered glycolysis at the level of fructose-1,6-bisphosphate. Glucose-6-phosphate isomerase operated in the gluconeogenetic direction from fructose-6-phosphate to glucose-6-phosphate and supplied additional carbon (7.2%) from the fructose part of the substrate toward the PPP. This involved supply of fructose-6-phosphate from the fructose part of sucrose either by PTS(Man) or by fructose-1,6-bisphosphatase. C. glutamicum further exhibited a high tricarboxylic acid (TCA) cycle flux of 78.2%. Isocitrate dehydrogenase therefore significantly contributed to the total NADPH supply of 190%. The demands for lysine (110%) and anabolism (32%) were lower than the supply, resulting in an apparent NADPH excess. The high TCA cycle flux and the significant secretion of dihydroxyacetone and glycerol display interesting targets to be approached by genetic engineers for optimization of the strain investigated.  相似文献   

9.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. Among them, the one component Fnr protein and the two-component Arc system coordinate the adaptive responses to oxygen availability. To systematically investigate the contribution of Arc- and Fnr-dependent regulation in catabolism, glucose-limited chemostat cultures were conducted on wild-type E. coli, an arcA mutant, an fnr mutant, and an arcAfnr double mutant strains under a well-defined semi-aerobic condition. The metabolic flux distributions of the cultures of these strains were estimated based on C-13 labeling experiments. It was shown that the oxidative pentose phosphate (PP) pathway was functioning at low level under semi-aerobic condition. The fluxes through pyruvate dehydrogenase (PDH) and tricarboxylic acid (TCA) cycle were found to be lower in the arcA mutant and the arcAfnr double mutant strains than that in the wild-type strain, although the expression of the genes involved in these pathways have been proved to be derepressed in the mutant strains ([Shalel-Levanon, S., San, K.Y., Bennett, G.N., 2005a. Effect of ArcA and FNR on the expression of genes related to the oxygen regulation and the glycolysis pathway in Escherichia coli under microaerobic growth conditions. Biotechnol. Bioeng. 92, 147-159; Shalel-Levanon, S., San, K.Y., Bennett, G.N., 2005c. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli. Metab. Eng. 7, 364-374]). The significantly higher lactate production in the arcAfnr double mutant strain was shown to be an indirect effect caused by the reduced pyruvate formate-lyase (PFL) and PDH fluxes as well as the intracellular redox state.  相似文献   

10.
To evaluate the importance of reactions within the central metabolism under different flux burdens the fluxes within the pentose phosphate pathway (PPP), as well as the other reactions of the central metabolism, were intensively analyzed and quantitated. For this purpose, Corynebacterium glutamicum was grown with [1-(13)C]glucose to metabolic and isotopic steady state and the fractional enrichments in precursor metabolites (e.g., pentose 5-phosphate) were quantified. Matrix calculus was used to express these data together with metabolite mass data. The detailed analysis of the dependence of (13)C enrichments on exchange fluxes enabled the transketolase-catalyzed exchange rate (2 pentose 5-phosphate <--> sedoheptulose 7-phosphate + glyceraldehyde 3-phosphate) to be quantified as 74.3% (molar metabolite flux) at a net flux of 10.3% and the exchange rate (pentose 5-phosphate + erythrose 4-phosphate <--> fructose 6-phosphate + glyceraldehyde 3-phosphate) to be quantified as 5.6% at a net flux of 8.1%. The flux entering the tricarboxylic acid cycle was 93.3%. The same comprehensive flux analysis as performed for the nonexcreting condition was done with the identical strain that had been forced to excrete L-glutamate. Because we had already quantified the fluxes for L-lysine excretion with an isogenic strain, three directly comparable flux situations are thus available. Consequently, this comparison permits a direct cause-and-effect relationship to be specified. In response to the different flux burdens of the cell, the PPP flux decreased from a maximum of 67% to 26%, with the glycolytic flux increasing accordingly. The carbon flux through isocitrate dehydrogenase increased from 20% to 36%. The bidirectional carbon flux between pyruvate and oxaloacetate decreased from 36% to 9%. Since the cause of the three different flux states was the allelic exchange in the final L-lysine assembling pathway or the glutamate export activity, respectively, the flexible response is the effect. This shows conclusively the enormous flexibility within the central metabolism of C. glutamicum to supply precursors upon their withdrawal for the synthesis of amino acids. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 168-180, 1997.  相似文献   

11.

The previous deletion of the cytoplasmic components of the phosphotransferase system (PTS) in Escherichia coli JM101 resulted in the PTS derivative strain PB11 with severely impaired growth capability in glucose as the sole carbon source. Previous adaptive laboratory evolution (ALE) experiment led to select a fast-growing strain named PB12 from PB11. Comparative genome analysis of PB12 showed a chromosomal deletion, which result in the loss of several genes including rppH which codes for the RNA pyrophosphohydrolase RppH, involved in the preparation of hundreds of mRNAs for further degradation by RNase E. Previous inactivation of rppH in PB11 (PB11rppH) improved significantly its growing capabilities and increased several mRNAs respect its parental strain PB11. These previous results led to propose to the PB11rppH mutant as an intermediate between PB11 and PB12 strains merged during the early ALE experiment. In this contribution, we report the metabolic response to the PTS and rppH mutations in the deep of a proteomic approach to understanding the relevance of rppH phenotype during an ALE experiment. Differentially upregulated proteins between the wild-type JM101/PB11, PB11/PB11rppH, and PB11/PB12 comparisons led to identifying 45 proteins between strain comparisons. Downregulated or upregulated proteins in PB11rppH were found expressed at an intermediate level with respect to PB11 and PB12. Many of these proteins were found involved in non-previously metabolic traits reported in the study of the PTS strains, including glucose, amino acids, ribose transport; amino acid biosynthesis; NAD biosynthesis/salvage pathway, biosynthesis of Ac-CoA precursors; detoxification and degradation pathways; stress response; protein synthesis; and possible mutator activities between comparisons. No changes were found in the expression of galactose permease GalP, previously proposed as the primary glucose transporter in the absence of PTS selected by the PTS derivatives during the ALE experiment. This result suggests that the evolving PTS population selected other transporters such as LamB, MglB, and ManX instead of GalP for glucose uptake during the early ALE experiment. Analysis of the biological relevance of the metabolic traits developed by the studied strains provided valuable information to understand the relevance of the rppH mutation in the PTS background during an ALE experiment as a strategy for the selection of valuable phenotypes for metabolic engineering purposes.

  相似文献   

12.
The substrate range of phosphoenolpyruvate:hexose phosphotransferase systems (hexose-PTSs) in Lactobacillus casei subsp. casei LAC3 and L. acidophilus LAC5 was examined. Strain LAC3 demonstrated PTS activities for glucose (Glc), mannose (Man), glucosamine (GcN), 2-deoxyglucose (2DG) and fructose (Fru), while strain LAC5 showed the activities only for Man and Fru. These activities were all constitutive. Growth of both strains was strongly inhibited by 2DG. 2DG-resistant mutants DG329 and DG504 were isolated, respectively, from strains LAC3 and LAC5. Mutant DG329 grown on Glc was defective in all the above-described activities observed with strain LAC3, whereas no defect in PTS activities was found in mutant DG504. Mutant DG329, however, showed some inducible activities for Man and Fru when grown on Man, Fru or Scr. These results strongly suggest that strain LAC3 has inducible PTS(s) specific for Man and/or Fru besides the well-known, broadly specific, constitutive Man-PTS, and also that strain LAC5 lacks the Man-PTS, but has other constitutive PTS(s) specific for Man and/or Fru. L. fermentum LAC12 had the Man-PTS as reported previously (Nagasaki et al., 1992), but had no inducible activities like those found in strain LAC3.  相似文献   

13.
Aspergillus niger produces oxalic acid as a by-product which causes problems with downstream processing of industrial enzymes. To overcome this problem the oah gene encoding oxaloacetate hydrolase (EC 3.7.1.1) was disrupted in a glucoamylase-producing strain of A. niger and the resulting strain was incapable of producing oxalic acid. The strain with the disrupted gene was compared with the wild-type strain producing oxalic acid in batch cultivations. The specific growth rate of both strains was 0.20 h(-1). The citric acid yields were identical, but the glucoamylase yield was only 50% in the disruptant compared with the wild-type strain. Batch experiments with 13C-labeled glucose as substrate were carried out to determine the metabolic fluxes through the central metabolism. The two strains had almost identical metabolic fluxes, which suggested that it was possible to disrupt the oah gene without pleiotropic consequences. The flux through the pentose phosphate pathway was around 60% of the glucose uptake for both strains, which suggested that a sufficient supply of NADPH was available for biosynthesis.  相似文献   

14.
15.
Escherichia coli W3110 was previously engineered to produce xylitol from a mixture of glucose plus xylose by expressing xylose reductase (CbXR) and deleting xylulokinase (DeltaxylB), combined with either plasmid-based expression of a xylose transporter (XylE or XylFGH) (Khankal et al., J Biotechnol, 2008) or replacing the native crp gene with a mutant (crp*) that alleviates glucose repression of xylose transport (Cirino et al., Biotechnol Bioeng 95:1167-1176, 2006). In this study, E. coli K-12 strains W3110 and MG1655 and wild-type E. coli B were compared as platforms for xylitol production from glucose-xylose mixtures using these same strategies. The engineered strains were compared in fed-batch fermentations and as non-growing resting cells. Expression of CRP* in the E. coli B strains tested was unable to enhance xylose uptake in the presence of glucose. Xylitol production was similar for the (crp*, DeltaxylB)-derivatives of W3110 and MG1655 expressing CbXR (average specific productivities of 0.43 g xylitol g cdw(-1 )h(-1) in fed-batch fermentation). In contrast, results varied substantially between different DeltaxylB-derivative strains co-expressing either XylE or XylFGH. The differences in genetic background between these host strains can therefore profoundly influence metabolic engineering strategies.  相似文献   

16.
17.
Escherichia coli engineered to uptake xylose while metabolizing glucose was previously shown to produce high levels of xylitol from a mixture of glucose and xylose when expressing NADPH-dependent xylose reductase from Candida boidinii (CbXR) (Cirino et al., Biotechnol Bioeng. 2006;95:1167-1176). We then described the effects of deletions of key metabolic pathways (e.g., Embden-Meyerhof-Parnas and pentose phosphate pathway) and reactions (e.g., transhydrogenase and NADH dehydrogenase) on resting-cell xylitol yield (Y RPG: moles of xylitol produced per mole of glucose consumed) (Chin et al., Biotechnol Bioeng. 2009;102:209-220). These prior results demonstrated the importance of direct NADPH supply by NADP+-utilizing enzymes in central metabolism for driving heterologous NADPH-dependent reactions. This study describes strain modifications that improve coupling between glucose catabolism (oxidation) and xylose reduction using two fundamentally different strategies. We first examined the effects of deleting the phosphofructokinase (pfk) gene(s) on growth-uncoupled xylitol production and found that deleting both pfkA and sthA (encoding the E. coli-soluble transhydrogenase) improved the xylitol Y RPG from 3.4 ± 0.6 to 5.4 ± 0.4. The second strategy focused on coupling aerobic growth on glucose to xylitol production by deleting pgi (encoding phosphoglucose isomerase) and sthA. Impaired growth due to imbalanced NADPH metabolism (Sauer et al., J Biol Chem. 2004;279:6613-6619) was alleviated upon expressing CbXR, resulting in xylitol production similar to that of the growth-uncoupled precursor strains but with much less acetate secretion and more efficient utilization of glucose. Intracellular nicotinamide cofactor levels were also quantified, and the magnitude of the change in the NADPH/NADP+ ratio measured from cells consuming glucose in the absence vs. presence of xylose showed a strong correlation to the resulting Y RPG.  相似文献   

18.
The effect of inactivation of the glucose phosphotransferase transport system (PTS) on 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) productivity and yield from glucose in Escherichia coli is reported. Strains used in this study were the PTS(+) PB103 and its PTS(-) glucose(+) derivative NF9. Their aroB(-) derivatives PB103B and NF9B were constructed to allow accurate measurement of total carbon flow into the aromatic pathway. The measured specific rates of DAHP synthesis were 0.55 and 0.94 mmol/g-dcw. h and the DAHP molar yields from glucose were 0.43 and 0.71 mol/mol for the PTS(+) aroB(-)and the PTS(-) glucose(+) aroB(-)strains, respectively. For the latter strain, this value represents 83% of the maximum theoretical yield for DAHP synthesis from glucose.  相似文献   

19.
20.
L J Reha-Krantz 《Gene》1985,38(1-3):275-276
The Escherichia coli JM105 strain was constructed as a sup0 strain to facilitate the cloning of selected recombinants (Yanisch-Perron et al., 1985). In our work with bacteriophage T4, we observed that several T4 am mutants could grow on JM105. To characterize the suppressor activity of JM105, we tested the growth of several T4 am mutants on a variety of E. coli suppressor-containing strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号