首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The major glycosylphosphatidylinositols (GPIs) transferred to protein in mammals and trypanosomes contain three mannoses. In Saccharomyces cerevisiae, however, the GPI transferred to protein bears a fourth, alpha1,2-linked Man on the alpha1,2-Man that receives the phosphoethanolamine (EthN-P) moiety through which GPIs become linked to protein. We report that temperature-sensitive smp3 mutants accumulate a GPI containing three mannoses and that smp3 is epistatic to the gpi11, gpi13, and gaa1 mutations, which normally result in the accumulation of Man(4)-GPIs, including the presumed substrate for the yeast GPI transamidase. The Smp3 protein, which is encoded by an essential gene, is therefore required for addition of the fourth Man to yeast GPI precursors. The finding that smp3 prevents the formation of the Man(4)-GPI that accumulates when addition of EthN-P to Man-3 is blocked in a gpi13 mutant suggests that the presence of the fourth Man is important for transfer of EthN-P to Man-3 of yeast GPIs. The Man(3)-GPI that accumulates in smp3 is a mixture of two dominant isoforms, one bearing a single EthN-P side branch on Man-1, the other with EthN-P on Man-2, and these isoforms can be placed in separate arms of a branched GPI assembly pathway. Smp3-related proteins are encoded in the genomes of Schizosaccharomyces pombe, Candida albicans, Drosophila melanogaster, and Homo sapiens and form a subgroup of a family of proteins, the other groups of which are defined by the Pig-B(Gpi10) protein, which adds the third GPI mannose, and by the Alg9 and Alg12 proteins, which act in the dolichol pathway for N-glycosylation. Because Man(4)-containing GPI precursors are normally formed in yeast and Plasmodium falciparum, whereas addition of a fourth Man during assembly of mammalian GPIs is rare and not required for GPI transfer to protein, Smp3p-dependent addition of a fourth Man represents a target for antifungal and antimalarial drugs.  相似文献   

2.
MPC1/GPI13/YLL031C, one of the genes involved in the addition of phospho-ethanolamine to the glycosylphosphatidylinositol (GPI) anchor core, is an essential gene. Three available temperature-sensitive mutant alleles, mpc1-3, mpc1-4, and mpc1-5, displayed different phenotypes to each other and, correspondingly, these mutants were found to have different mutations in the MPC1 ORF. Temperature-sensitivity of mpc1-5 mutants was suppressed by 5 mM ZnSO(4) and by 5 mM MnCl(2). Multicopy suppressors were isolated from mpc1-5 mutant. Suppressors commonly effective to mpc1-4 and mpc1-5 mutations are PSD1, encoding phosphatidylserine decarboxylase, and ECM33, which were found to suppress the temperature-sensitive phenotype shown by the fsr2-1 and las21delta mutants, those of which have defects in the GPI anchor synthesis. PSD2, encoding another phosphatidylserine decarboxylase that is localized in Golgi/vacuole, was found to be able to serve as a multicopy suppressor of mpc1 and fsr2-1 mutants but not of the las21 delta mutant. In contrast to psd1delta, psd2delta showed a synthetic growth defect with mpc1 mutants but not with fsr2-1 or las21delta. Furthermore, psd1delta psd2delta mpc1 triple mutants did not form colonies on nutrient medium unless ethanolamine was supplied to the medium, whereas psd1delta psd2 delta fsr2-1 or psd1delta psd2 delta las21delta triple mutants grew on nutrient medium without supplementation of ethanolamine. These observations suggest that Mpc1 preferentially utilizes phosphatidylethanolamine produced by Psd2 that is localized in Golgi/vacuole. fsr2-1 dpl1 Delta psd1delta strains showed slower growth than fsr2-1 dpl1delta psd2 delta, suggesting that Fsr2 enzyme depends more on Dpl1 and Psd1 for production of phosphatidylethanolamine. Las21 did not show preference for the metabolic pathway to produce phosphatidylethanolamine.  相似文献   

3.
Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.  相似文献   

4.
The Cvt pathway is a biosynthetic transport route for a distinct subset of resident yeast vacuolar hydrolases, whereas macroautophagy is a nonspecific degradative mechanism that allows cell survival during starvation. Yet, these two vacuolar trafficking pathways share a number of identical molecular components and are morphologically very similar. For example, one of the hallmarks of both pathways is the formation of double-membrane cytosolic vesicles that sequester cargo before vacuolar delivery. The origin of the vesicle membrane has been controversial and various lines of evidence have implicated essentially all compartments of the endomembrane system. Despite the analogies between the Cvt pathway and autophagy, earlier work has suggested that the origin of the engulfing vesicle membranes is different; the endoplasmic reticulum is proposed to be required only for autophagy. In contrast, in this study we demonstrate that the endoplasmic reticulum and/or Golgi complex, but not endosomal compartments, play an important role for both yeast transport routes. Along these lines, we demonstrate that Berkeley bodies, a structure generated from the Golgi complex in sec7 cells, are immunolabeled with Atg8, a structural component of autophagosomes. Finally, we also show that none of the yeast t-SNAREs are located at the preautophagosomal structure, the presumed site of double-membrane vesicle formation. Based on our results, we propose two models for Cvt vesicle biogenesis.  相似文献   

5.
The Saccharomyces cerevisiae chitinase described by Correa et al. (Correa, J. U., Elango, N., Polacheck, I., and Cabib, E. (1982) J. Biol. Chem. 257, 1392-1397) has been cloned and sequenced. Analysis of the derived amino acid sequence suggests that the protein contains four domains: a signal sequence, a catalytic domain, a serine/threonine-rich region, and a carboxyl-terminal domain with high binding affinity for chitin. Most of the enzyme produced by cells is secreted into the growth medium and is extensively glycosylated with a series of short O-linked mannose oligosaccharides ranging in size from Man2 to Man5. Chitinase O-mannosylation was further examined in the temperature-sensitive secretion mutants sec18, sec7, and sec6. Oligosaccharides isolated from chitinase accumulating in cells at the nonpermissive temperature revealed Man1 and Man2 associated with the sec18 mutant. sec6 and sec7 accumulated Man2-Man5 with a higher proportion of Man5 relative to the secreted protein. A significant amount of chitinase is also found associated with the cell wall through binding of COOH-terminal domain to chitin. Disruption of the gene for the enzyme leads to a defect in cell separation but does not substantially alter the level of cellular chitin.  相似文献   

6.
CTF4 and CTF18 are required for high-fidelity chromosome segregation. Both exhibit genetic and physical ties to replication fork constituents. We find that absence of either CTF4 or CTF18 causes sister chromatid cohesion failure and leads to a preanaphase accumulation of cells that depends on the spindle assembly checkpoint. The physical and genetic interactions between CTF4, CTF18, and core components of replication fork complexes observed in this study and others suggest that both gene products act in association with the replication fork to facilitate sister chromatid cohesion. We find that Ctf18p, an RFC1-like protein, directly interacts with Rfc2p, Rfc3p, Rfc4p, and Rfc5p. However, Ctf18p is not a component of biochemically purified proliferating cell nuclear antigen loading RF-C, suggesting the presence of a discrete complex containing Ctf18p, Rfc2p, Rfc3p, Rfc4p, and Rfc5p. Recent identification and characterization of the budding yeast polymerase kappa, encoded by TRF4, strongly supports a hypothesis that the DNA replication machinery is required for proper sister chromatid cohesion. Analogous to the polymerase switching role of the bacterial and human RF-C complexes, we propose that budding yeast RF-C(CTF18) may be involved in a polymerase switch event that facilities sister chromatid cohesion. The requirement for CTF4 and CTF18 in robust cohesion identifies novel roles for replication accessory proteins in this process.  相似文献   

7.
8.
9.
The action of gamma-aminobutyrate (GABA) as an intercellular signaling molecule has been intensively studied, but the role of this amino acid metabolite in intracellular metabolism is poorly understood. In this work, we identify a Saccharomyces cerevisiae homologue of the GABA-producing enzyme glutamate decarboxylase (GAD) that is required for normal oxidative stress tolerance. A high copy number plasmid bearing the glutamate decarboxylase gene (GAD1) increases resistance to two different oxidants, H(2)O(2) and diamide, in cells that contain an intact glutamate catabolic pathway. Structural similarity of the S. cerevisiae GAD to previously studied plant enzymes was demonstrated by the cross-reaction of the yeast enzyme to a antiserum directed against the plant GAD. The yeast GAD also bound to calmodulin as did the plant enzyme, suggesting a conservation of calcium regulation of this protein. Loss of either gene encoding the downstream steps in the conversion of glutamate to succinate reduced oxidative stress tolerance in normal cells and was epistatic to high copy number GAD1. The gene encoding succinate semialdehyde dehydrogenase (UGA5) was identified and found to be induced by H(2)O(2) exposure. Together, these data strongly suggest that increases in activity of the glutamate catabolic pathway can act to buffer redox changes in the cell.  相似文献   

10.
11.
Candida albicans is the single, most frequently isolated human fungal pathogen. As with most fungal pathogens, the factors which contribute to pathogenesis in C. albicans are not known, despite more than a decade of molecular genetic analysis. Candida albicans was thought to be asexual until the discovery of the MTL loci homologous to the mating type (MAT) loci in Saccharomyces cerevisiae led to the demonstration that mating is possible. Using Candida albicans mutants in genes likely to be involved in mating, we analysed the process to determine its similarity to mating in Saccharomyces cerevisiae. We examined disruptions of three of the genes in the MAPK pathway which is involved in filamentous growth in both S. cerevisiae and C. albicans and is known to control pheromone response in the former fungus. Disruptions in HST7 and CPH1 blocked mating in both MTLa and MTL(alpha) strains, whereas disruptions in STE20 had no effect. A disruption in KEX2, a gene involved in processing the S. cerevisiae pheromone Mf(alpha), prevented mating in MTL(alpha) but not MTLa cells, whereas a disruption in HST6, the orthologue of the STE6 gene which encodes an ABC transporter responsible for secretion of the Mfa pheromone, prevented mating in MTLa but not in MTL(alpha) cells. Disruption of two cell wall genes, ALS1 and INT1, had no effect on mating, even though ALS1 was identified by similarity to the S. cerevisiae sexual agglutinin, SAG1. The results reveal that these two diverged yeasts show a surprising similarity in their mating processes.  相似文献   

12.
The actin cytoskeleton controls the overall structure of cells and is highly polarized in chemotaxing cells, with F-actin assembled predominantly in the anterior leading edge and to a lesser degree in the cell's posterior. Wiskott-Aldrich syndrome protein (WASP) has emerged as a central player in controlling actin polymerization. We have investigated WASP function and its regulation in chemotaxing Dictyostelium cells and demonstrated the specific and essential role of WASP in organizing polarized F-actin assembly in chemotaxing cells. Cells expressing very low levels of WASP show reduced F-actin levels and significant defects in polarized F-actin assembly, resulting in an inability to establish axial polarity during chemotaxis. GFP-WASP preferentially localizes at the leading edge and uropod of chemotaxing cells and the B domain of WASP is required for the localization of WASP. We demonstrated that the B domain binds to PI(4,5)P2 and PI(3,4,5)P3 with similar affinities. The interaction between the B domain and PI(3,4,5)P3 plays an important role for the localization of WASP to the leading edge in chemotaxing cells. Our results suggest that the spatial and temporal control of WASP localization and activation is essential for the regulation of directional motility.  相似文献   

13.
Cox19 is an important accessory protein in the assembly of cytochrome c oxidase in yeast. The protein is functional when tethered to the mitochondrial inner membrane, suggesting its functional role within the intermembrane space. Cox19 resembles Cox17 in having a twin CX(9)C sequence motif that adopts a helical hairpin in Cox17. The function of Cox17 appears to be a Cu(I) donor protein in the assembly of the copper centers in cytochrome c oxidase. Cox19 also resembles Cox17 in its ability to coordinate Cu(I). Recombinant Cox19 binds 1 mol eq of Cu(I) per monomer and exists as a dimeric protein. Cox19 isolated from the mitochondrial intermembrane space contains variable quantities of copper, suggesting that Cu(I) binding may be a transient property. Cysteinyl residues important for Cu(I) binding are also shown to be important for the in vivo function of Cox19. Thus, a correlation exists in the ability to bind Cu(I) and in vivo function.  相似文献   

14.
We have characterized Cox16p, a new cytochrome oxidase (COX) assembly factor. This protein is encoded by COX16, corresponding to the previously uncharacterized open reading frame YJL003w of the yeast genome. COX16 was identified in studies of COX-deficient mutants previously assigned to complementation group G22 of a collection of yeast pet mutants. To determine its location, Cox16p was tagged with a Myc epitope at the C terminus. The fusion protein, when expressed from a low-copy plasmid, complements the mutant and is detected solely in mitochondria. Cox16p-myc is an integral component of the mitochondrial inner membrane, with its C terminus exposed to the intermembrane space. Cox16 homologues are found in both the human and murine genomes, although human COX16 does not complement the yeast mutant. Cox16p does not appear to be involved in maturation of subunit 2, copper recruitment, or heme A biosynthesis. Cox16p is thus a new protein in the growing family of eukaryotic COX assembly factors for which there are as yet no specific functions known. Like other recently described nuclear gene products involved in expression of cytochrome oxidase, COX16 is a candidate for screening in inherited human COX deficiencies.  相似文献   

15.
Thioredoxins are small, highly conserved oxidoreductases that are required to maintain the redox homeostasis of the cell. They have been best characterized for their role as antioxidants in protection against reactive oxygen species. We show here that thioredoxins (TRX1, TRX2) and thioredoxin reductase (TRR1) are also required for protection against a reductive stress induced by exposure to dithiothreitol (DTT). This sensitivity to reducing conditions is not a general property of mutants affected in redox control, as mutants lacking components of the glutathione/glutaredoxin system are unaffected. Furthermore, TRX2 gene expression is induced in response to DTT treatment, indicating that thioredoxins form part of the cellular response to a reductive challenge. Our data indicate that the sensitivity of thioredoxin mutants to reducing stress appears to be a consequence of elevated glutathione levels, which is present predominantly in the reduced form (GSH). The elevated GSH levels also result in a constitutively high unfolded protein response (UPR), indicative of an accumulation of unfolded proteins in the endoplasmic reticulum (ER). However, there does not appear to be a general defect in ER function in thioredoxin mutants, as oxidative protein folding of the model protein carboxypeptidase Y occurs with similar kinetics to the wild-type strain, and trx1 trx2 mutants are unaffected in sensitivity to the glycosylation inhibitor tunicamycin. Furthermore, trr1 mutants are resistant to tunicamycin, consistent with their high UPR. The high UPR seen in trr1 mutants can be abrogated by the GSH-specific reagent 1-chloro-2,4-dinitrobenzene. In summary, thioredoxins are required to maintain redox homeostasis in response to both oxidative and reductive stress conditions.  相似文献   

16.
The nucleotide sequences of a partial cDNA and three pseudogenes of human cytochrome c were determined. The complete nucleotide sequences which encode human cytochrome c were constructed on the basis of one of the pseudogenes by in vitro mutagenesis. The constructed human cytochrome c was functionally expressed in Saccharomyces cerevisiae. The recombinant human cytochrome c was purified and characterized.  相似文献   

17.
Sporulation in diploid cells homozygous for the cyr1-2 mutation of the yeast Saccharomyces cerevisiae was examined. This mutation causes a defect in adenylate cyclase and temperature-sensitive arrest in the G1 phase of the mitotic cell cycle. The cyr1-2/cyr1-2 diploid cells were able to initiate meiotic divisions, but produced predominantly two-spored asci at the restrictive temperature. Temperature-sensitive period for production of two-spored asci was approximately 12 h after the transfer of cells to the sporulation medium. The levels of cAMP increased during this period in the wild type and cyr1-2/cyr1-2 diploid cells incubated at the permissive temperature, but remained at an extremely low level in the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature. Dyad analysis of the cyr1-2 strain indicated that meiotic products were randomly included into ascospores. Fluorescent microscopy of the cyr1-2/cyr1-2 diploid cells incubated at the restrictive temperature revealed that individual haploid nuclei were enclosed in each of the two spores after meiosis. About half of the cyr1-2/cyr1-2 diploid cells entered normal meiosis 1 producing two normal spindle pole bodies with inner and outer plaques, and the other half entered abnormal meiosis 1 producing one normal spindle pole body and one defective spindle pole body without out plaque. At meiosis II, some cells contained a pair of normal spindle pole bodies and other cells contained pairs of normal and abnormal spindle pole bodies.  相似文献   

18.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

19.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

20.
The presence of cytochrome c oxidase subunits and the association of these subunits with each other was studied in a heme-deficient Saccharomyces cerevisiae mutant. This mutant had been isolated by Gollub et al. (1977) J. Biol. Chem. 252, 2846-2854) and had been shown lack delta-aminolevulinic acid synthetase. When grown in the absence of heme or heme precursors, the mutant is respiration-deficient, devoid of cytochrome absorption bands and auxotrophic for all those components whose biosynthesis is dependent on hemoproteins; when grown in the presence of heme or heme precursors, the mutant is phenotypically wild type. Upon growth of the mutant in the absence of heme synthesis, the mitochondria still contained two of the three mitochondrially made cytochrome c oxidase subunits (i.e. II and III) and at least one of the cytoplasmically made cytochrome c subunits (VI). The other subunits were either barely detectable (I, IV) or undetectable (V, VII). The residual subunits were apparently not assembled with each other since an antiserum directed mainly against Subunit VI failed to co-precipitate Subunits II and III which were still present. In contrast, growth of the mutant in the presence of delta-aminolevulinic acid led to the accumulation of active, fully assembled cytochrome c oxidase in the mitochondria. Heme a (or one of its precursors) thus controls the assembly of cytochrome c oxidase from its individual subunits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号