首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytosolic phospholipase A2-alpha (cPLA2-alpha) is a calcium-activated enzyme involved in agonist-induced arachidonic acid release. In endothelial cells, free arachidonic acid is predominantly converted into prostacyclin, a potent vasodilator and inhibitor of platelet activation. As the rate-limiting step in prostacyclin production is the generation of free arachidonic acid by cPLA2-alpha, this enzyme has become an attractive pharmacological target and the focus of many studies. Following stimulation with calcium-mobilizing agonists, cPLA2-alpha translocates to intracellular phospholipid membranes via its C2 domain. In this study, the calcium-induced association of cPLA2-alpha with EA.hy.926 endothelial cell membranes was investigated. Subcellular fractionation and immunofluorescence studies showed that following stimulation with histamine, thrombin or the calcium ionophore A23187, cPLA2-alpha relocated to intracellular membranes. Treatment of A23187-stimulated cells with EGTA or BAPTA-AM demonstrated that a substantial pool of cPLA2-alpha remained associated with membrane fractions in a calcium-independent manner. Furthermore, immunofluorescence microscopy studies revealed that cells stimulated for periods of greater than 10 min showed a high proportion of calcium-independent membrane-associated cPLA2-alpha. Calcium-independent membrane association of cPLA2-alpha was not due to hydrophobic or cytoskeletal interactions. Finally, the recombinant C2 domain of cPLA2-alpha exhibited calcium-independent membrane binding to membranes isolated from A23187-stimulated cells but not those isolated from nonstimulated cells. These findings suggest that novel mechanisms involving accessory proteins at the target membrane play a role in the regulation of cPLA2-alpha. Such regulatory associations could enable the cell to discriminate between the varying levels of cytosolic calcium induced by different stimuli.  相似文献   

2.
The regulated generation of prostaglandins from endothelial cells is critical to vascular function. Here we identify a novel mechanism for the regulation of endothelial cell prostaglandin generation. Cytosolic phospholipase A(2)-alpha (cPLA(2)alpha) cleaves phospholipids in a Ca(2+)-dependent manner to yield free arachidonic acid and lysophospholipid. Arachidonic acid is then converted into prostaglandins by the action of cyclooxygenase enzymes and downstream synthases. By previously undefined mechanisms, nonconfluent endothelial cells generate greater levels of prostaglandins than confluent cells. Here we demonstrate that Ca(2+)-independent association of cPLA(2)alpha with the Golgi apparatus of confluent endothelial cells correlates with decreased prostaglandin synthesis. Golgi association blocks arachidonic acid release and prevents functional coupling between cPLA(2)alpha and COX-mediated prostaglandin synthesis. When inactivated at the Golgi apparatus of confluent endothelial cells, cPLA(2)alpha is associated with the phospholipid-binding protein annexin A1. Furthermore, the siRNA-mediated knockdown of endogenous annexin A1 significantly reverses the inhibitory effect of confluence on endothelial cell prostaglandin generation. Thus the confluence-dependent interaction of cPLA(2)alpha and annexin A1 at the Golgi acts as a novel molecular switch controlling cPLA(2)alpha activity and endothelial cell prostaglandin generation.  相似文献   

3.
Production of arachidonic acid (AA) metabolites - prostacyclin (PGI(2)) in large vessels and prostaglandin E(2) (PGE(2)) in microcirculation is intrinsically involved in maintenance of vascular wall homeostasis. EA.hy 926 is a hybrid cell line, is derived by fusion of HUVEC with A549 cells. The aim of this study was to examine the production of prostacyclin and PGE2 in resting and IL-1beta-stimulated EA.ha 926 cells, in comparison with its progenitor cells. Non-stimulated EA.hy 926 cells has been found to produce much lower amounts of prostacyclin than resting HUVEC. Resting hybrid cells produced more PGE(2) than prostacyclin, despite they expressed high levels of COX-1 and PGI(2) synthase. On the contrary to HUVEC and A549, EA.hy 926 cells did not respond to IL-1beta with COX-2 induction and increase of prostaglandin production, however they did it in response to lysophosphatidylcholine (LPC). The characteristics of EA.hy 926 cells in terms of the pattern of prostanoid formation could facilitate studies on endothelial metabolism and role of these important lipid mediators.  相似文献   

4.
Arachidonic acid and its metabolites are implicated in regulating endothelial cell proliferation. Cytosolic phospholipase A2-alpha (cPLA2alpha) is responsible for receptor-mediated arachidonic acid evolution. We tested the hypothesis that cPLA2alpha activity is linked to endothelial cell proliferation. The specific cPLA2alpha inhibitor, pyrrolidine-1, inhibited umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner. Exogenous arachidonic acid addition reversed this inhibitory effect. Inhibition of sPLA2 did not affect HUVEC proliferation. The levels of cPLA2alpha did not differ between subconfluent and confluent cultures of cells. However, using fluorescence microscopy we observed a novel, confluence-dependent redistribution of cPLA2alpha to the distal Golgi apparatus in HUVECs. Association of cPLA2alpha with the Golgi was linked to the proliferative status of HUVECs. When associated with the Golgi apparatus, cPLA2alpha activity was seen to be 87% inhibited. Relocation of cPLA2alpha to the cytoplasm and nucleus, and cPLA2alpha enzyme activity were required for cell cycle entry upon mechanical wounding of confluent monolayers. Thus, cPLA2alpha activity and function in controlling endothelial cell proliferation is regulated by reversible association with the Golgi apparatus.  相似文献   

5.
Summary Weibel-Palade bodies are ultrastructurally defined organelles found only in vascular endothelial cells. Because endothelium in corpo is very dispersed, isolation and further characterization of this organelle has been dependent on increasing the number of cells in culture. However, primary isolates of endothelial cells have a limited replication potential and tend to senesce in culture. In this report, EA.hy926, a continuously replicating cell line derived from human endothelium, is shown to contain Weibel-Palade bodies. Electron micrographs demonstrate the ultrastructural characteristics of these tissue-specific organelles and their cytoplasmic distribution in EA.hy926 cells. Von Willebrand factor, which has been shown to exist in Weibel Palade bodies, is demonstrated by immunofluorescence in discrete rod-shaped organelles whose size, shape, and distribution are consistent with that of Weibel-Palade bodies in primary endothelial cell cultures. Rapid release of von Willebrand factor can be induced by calcium ionophore, and large multimeric forms of the protein are found in EA.hy926 cells. These two properties are consistent with the function currently ascribed to Weibel Palade bodies: storage of multimerized von Willebrand factor. Thus ultrastructural, immunologic, and functional data establish the existence of this as yet poorly understood tissue-specific organelle in a continuous, vigorously replicating human cell line.  相似文献   

6.
目的探讨杂合肽P18体外对内皮细胞EA.hy926血管生成的抑制作用.方法采用MTT法检测P18对EA.hy926细胞增殖的影响;应用Matrigel实验检测P18对内皮细胞形成管状结构的影响;利用流式细胞术分析P18对内皮细胞的损伤作用.结果 MTT结果显示P18可明显抑制EA.hy926细胞的增殖,且抑制率存在剂量依赖性;Matrigel实验表明P18具有抑制EA.hy926细胞体外分化成管状结构的作用;流式结果显示15 μM P18作用内皮细胞6 h后,所诱导的细胞坏死比例达到81.4%.结论体外实验结果表明,杂合肽P18具有体外抑制EA.hy926细胞血管生成的作用.  相似文献   

7.
Yang J  Yang S  Gao X  Yuan YJ 《Molecular bioSystems》2011,7(8):2428-2440
Phospholipids in human endothelial cells (ECs), cell line EA.hy926, were profiled by a novel lipidomics approach, combining liquid chromatography (LC)-ion trap mass spectrometry (MS) and LC-tandem quadrupole MS. More than 200 species of phospholipids were quantified. Twenty-eight were identified as the most discriminant species in response to different levels of oxidative stress induced by hydrogen peroxide (H(2)O(2)). H(2)O(2) treatment induced phosphorylation of cytosolic phospholipase A(2) (cPLA(2)) via the activation of extracellular-regulated kinase 1/2 (ERK1/2), increasing the production of lysophosphatidylethanolamine (LPE) and lysophosphatidylcholine (LPC). The release of arachidonic acid (AA, 20?:?4) increased from no H(2)O(2) exposure to 1 h exposure, decreased from 1 h to 2 h, and increased again from 2 h to 4 h exposure time. The particular increase seen of phosphatidylcholine (PC) species that include AA chains from 1 h to 2 h indicates that the released AA is reincorporating into PC molecules to reduce the extension of the AA cascade. The change in free AA levels seen suggests possible defense mechanisms to oxidative injury in ECs. We further verified nine species as potential biomarkers by adding inhibitor and demonstrated direct correlation to the activity of the cPLA(2)-AA pathway. The oxidative injury to cell line EA.hy926 provided a novel application for a combined lipidomics and signal transduction approach. This combined approach has enabled future investigations for possible therapeutic interventions in phospholipids and cPLA(2) activity for defense against oxidative cellular stress.  相似文献   

8.
Phospholipase A(2) enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A(2)α (cPLA(2)α) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA(2)α localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell-cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA(2)α release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA(2)α to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA(2)α fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA(2)α Golgi localization linked to cell confluence. Furthermore, cPLA(2)α Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA(2)α from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA(2)α-dependent endothelial tubule formation. Thus a VE-cadherin-PAR3-α-catenin adhesion complex regulates cPLA(2)α recruitment to the Golgi apparatus, with functional consequences for vascular physiology.  相似文献   

9.
Endothelial cell lines express markers and are assumed to exhibit other endothelial cell responses. We investigated E-selectin expression from human umbilical vein endothelial cells, the spontaneously transformed ECV304 line and the hybrid line EA.hy926 by flow cytometry and immunofluorescence, mRNA and soluble E-selectin release. In cells exposed to tumour necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), median (range) percentage of E-selectin-positive HUVECs increased from 1.6(0.9-6. 2)% to 91.4(83.0-96.1)%, (P=0.001) using flow cytometry. In contrast, E-selectin expression by ECV304 and EA.hy926 cell lines was 100-fold lower. E-selectin mRNA was detectable after 2 h, maximal at 6 h in HUVECs and undetectable in EA.hy926 and ECV304 cell lines after exposure to TNF-alpha/IL-1beta. sE-selectin accumulation increased (P=0.004) in HUVECs only. Neutrophil adherence to ECV304 and EA.hy926 cells was poor compared to HUVECs (P=0.004). The cell lines ECV304 and EA.hy926 do not exhibit normal endothelium expression of E-selectin, and may not be appropriate for studies of adhesion.  相似文献   

10.
Human type IIA secretory phospholipase A2 (sPLA2-IIA) is induced in association with several immune-mediated inflammatory conditions. We have evaluated the effect of sPLA2-IIA on PG production in primary synovial fibroblasts from patients with rheumatoid arthritis (RA). At concentrations found in the synovial fluid of RA patients, exogenously added sPLA2-IIA dose-dependently amplified TNF-alpha-stimulated PGE2 production by cultured synovial fibroblasts. Enhancement of TNF-alpha-stimulated PGE2 production in synovial cells was accompanied by increased expression of cyclooxygenase (COX)-2 and cytosolic phospholipase A2 (cPLA2)-alpha. Blockade of COX-2 enzyme activity with the selective inhibitor NS-398 prevented both TNF-alpha-stimulated and sPLA2-IIA-amplified PGE2 production without affecting COX-2 protein induction. However, both sPLA2-IIA-amplified PGE2 production and enhanced COX-2 expression were blocked by the sPLA2 inhibitor LY311727. Colocalization studies using triple-labeling immunofluorescence microscopy showed that sPLA2-IIA and cPLA2-alpha are coexpressed with COX-2 in discrete populations of CD14-positive synovial macrophages and synovial tissue fibroblasts from RA patients. Based on these findings, we propose a model whereby the enhanced expression of sPLA2-IIA by RA synovial cells up-regulates TNF-alpha-mediated PG production via superinduction of COX-2. Therefore, sPLA2-IIA may be a critical modulator of cytokine-mediated synovial inflammation in RA.  相似文献   

11.
Cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) cleaves its preferred substrate, arachidonic acid, at the sn-2 position of membrane glycerophospholipids. Stimulation of cells with agents that mobilize intracellular calcium and/or promote the phosphorylation of cPLA(2)-alpha leads to (i) translocation of the enzyme from cytosol to endoplasmic reticulum, Golgi apparatus and perinuclear membranes-where it associates with the arachidonic acid in close proximity to downstream eicosanoid-producing enzymes; and (ii) the change in configuration induced by phosphorylation increases the phospholipid binding affinity and arachidonic acid release. As a mediator of growth factors, cytokines, chemokines, and hormones that modulate survival and growth in various cell types, cPLA(2)-alpha has attracted considerable attention as a potential therapeutic target in control of inflammation and cancer. The importance of the enzyme may have been underestimated by the relatively normal phenotype in the enzyme knockout animals. A clear phenotype has emerged when these knockout animals are used as models of various diseases.  相似文献   

12.
Cyclooxygenases (COXs) catalyze the committed step in prostaglandin (PG) biosynthesis. COX-1 is constitutively expressed and stable, whereas COX-2 is inducible and short lived. COX-2 is degraded via endoplasmic reticulum (ER)-associated degradation (ERAD) following post-translational glycosylation of Asn-594. COX-1 and COX-2 are found in abundance on the luminal surfaces of the ER and inner membrane of the nuclear envelope. Using confocal immunocytofluorescence, we detected both COX-2 and microsomal PGE synthase-1 (mPGES-1) but not COX-1 in the Golgi apparatus. Inhibition of trafficking between the ER and Golgi retarded COX-2 ERAD. COX-2 has a C-terminal STEL sequence, which is an inefficient ER retention signal. Substituting this sequence with KDEL, a robust ER retention signal, concentrated COX-2 in the ER where it was stable and slowly glycosylated on Asn-594. Native COX-2 and a recombinant COX-2 having a Golgi targeting signal but not native COX-1 exhibited efficient catalytic coupling to mPGES-1. We conclude that N-glycosylation of Asn-594 of COX-2 occurs in the ER, leading to anterograde movement of COX-2 to the Golgi where the Asn-594-linked glycan is trimmed prior to retrograde COX-2 transport to the ER for ERAD. Having an inefficient ER retention signal leads to sluggish Golgi to ER transit of COX-2. This permits significant Golgi residence time during which COX-2 can function catalytically. Cytosolic phospholipase A, which mobilizes arachidonic acid for PG synthesis, preferentially translocates to the Golgi in response to physiologic Ca2+ mobilization. We propose that cytosolic phospholipase A, COX-2, and mPGES-1 in the Golgi comprise a dedicated system for COX-2-dependent PGE2 biosynthesis.  相似文献   

13.
14.
15.
Resting endothelial cells express the small proteoglycan biglycan, whereas sprouting endothelial cells also synthesize decorin, a related proteoglycan. Here we show that decorin is expressed in endothelial cells in human granulomatous tissue. For in vitro investigations, the human endothelium-derived cell line, EA.hy 926, was cultured for 6 or more days in the presence of 1% fetal calf serum on top of or within floating collagen lattices which were also populated by a small number of rat fibroblasts. Endothelial cells aligned in cord-like structures and developed cavities that were surrounded by human decorin. About 14% and 20% of endothelial cells became apoptotic after 6 and 12 days of co-culture, respectively. In the absence of fibroblasts, however, the extent of apoptosis was about 60% after 12 days, and cord-like structures were not formed nor could decorin production be induced. This was also the case when lattices populated by EA.hy 926 cells were maintained under one of the following conditions: 1) 10% fetal calf serum; 2) fibroblast-conditioned media; 3) exogenous decorin; or 4) treatment with individual growth factors known to be involved in angiogenesis. The mechanism(s) by which fibroblasts induce an angiogenic phenotype in EA.hy 926 cells is (are) not known, but a causal relationship between decorin expression and endothelial cell phenotype was suggested by transducing human decorin cDNA into EA.hy 926 cells using a replication-deficient adenovirus. When the transduced cells were cultured in collagen lattices, there was no requirement of fibroblasts for the formation of capillary-like structures and apoptosis was reduced. Thus, decorin expression seems to be of special importance for the survival of EA.hy 926 cells as well as for cord and tube formation in this angiogenesis model.  相似文献   

16.
A permanent vascular endothelial cell line, EA.hy 926, was shown to express endothelin-1 (ET-1) mRNA and to secrete big ET-1 and ET-1 into culture medium. The concentration of both big ET-1 and ET-1 was significantly increased in EA.hy 926 culture medium by phosphoramidon, a metalloproteinase inhibitor, suggesting that phosphoramidon sensitive protease(s) may be responsible for the degradation of ET-1 and big ET-1. EA.hy 926 cells responded to various regulators of ET-1 similarly as primary human vascular endothelial cells. The production of ET-1 was increased by thrombin and decreased by vasodilators such as atrial natriuretic peptide, brain natriuretic peptide and nitroprusside, and by 8-bromo cyclic GMP and papaverine. This continuous human endothelial hybrid cell line could facilitate studies of regulation of ET-1 production in human endothelial cells, which in primary cultures have limited replication potential.  相似文献   

17.
Increased intracellular Ca(2+) concentrations ([Ca(2+)](i)) promote cytosolic phospholipase A(2) (cPLA(2)) translocation to intracellular membranes. The specific membranes to which cPLA(2) translocates and the [Ca(2+)](i) signals required were investigated. Plasmids of EGFP fused to full-length cPLA(2) (EGFP-FL) or to the cPLA(2) C2 domain (EGFP-C2) were used in Ca(2+)/EGFP imaging experiments of cells treated with [Ca(2+)](i)-mobilizing agonists. EGFP-FL and -C2 translocated to Golgi in response to sustained [Ca(2+)](i) greater than approximately 100-125 nm and to Golgi, ER, and perinuclear membranes (PNM) at [Ca(2+)](i) greater than approximately 210-280 nm. In response to short duration [Ca(2+)](i) transients, EGFP-C2 translocated to Golgi, ER, and PNM, but EGFP-FL translocation was restricted to Golgi. However, EGFP-FL translocated to Golgi, ER, and PNM in response to long duration transients. In response to declining [Ca(2+)](i), EGFP-C2 readily dissociated from Golgi, but EGFP-FL dissociation was delayed. Agonist-induced arachidonic acid release was proportional to the [Ca(2+)](i) and to the extent of cPLA(2) translocation. In summary, we find that the differential translocation of cPLA(2) to Golgi or to ER and PNM is a function of [Ca(2+)](i) amplitude and duration. These results suggest that the cPLA(2) C2 domain regulates differential, Ca(2+)-dependent membrane targeting and that the catalytic domain regulates both the rate of translocation and enzyme residence.  相似文献   

18.
Apoptosis can be routinely characterized using biomolecular markers such as in the TUNEL and the annexin V assays or by using fluorescent caspase substrates. Apoptosis can also be semi-quantitatively characterized using microscopy, which targets morphological features such as cell rounding, nuclear condensation and fragmentation as well as cell membrane blebbing. This label-free approach provides a limited resolution for the evolution of these events in time and relies heavily on subjective identification of the morphological features. Here we propose a label-free assay based on surface plasmon resonance (SPR) detection of minute morphology changes occurring as a result of apoptosis induction in an endothelial cell model (EA.hy926). At first, annexin V assays confirmed that our cellular model was responsive to TRAIL over a 12-hour period. Then, we show that SPR allows accurate monitoring of apoptosis by measuring (1) the duration of the latency period during which the apoptotic signal is integrated by the initiator caspases and transmitted to the executioner caspases, (2) the rate of the execution phase in which death substrates are cleaved and morphological changes occur, and (3) the total extent of apoptosis. Using these parameters, we characterized the responses obtained with TRAIL (EA.hy926, HeLa, AD-293) and the anti-Fas antibody (HeLa) for the extrinsic pathways and UV exposure (HeLa) for the intrinsic pathways. By comparing the SPR time-course of apoptosis with phase contrast micrographs, we demonstrate that the cell morphological hallmarks of apoptosis are the major contributors to the SPR signal. Altogether, our results validate the use of SPR as an accurate label-free assay for the real-time monitoring of apoptosis-triggered cell morphological changes.  相似文献   

19.
In endothelial cells specifically, cPLA2α translocates from the cytoplasm to the Golgi complex in response to cell confluence. Considering the link between confluence and cell–cell junction formation, and the emerging role of cPLA2α in intracellular trafficking, we tested whether Golgi-associated cPLA2α is involved in the trafficking of junction proteins. Here, we show that the redistribution of cPLA2α from the cytoplasm to the Golgi correlates with adherens junction maturation and occurs before tight junction formation. Disruption of adherens junctions using a blocking anti-VE-cadherin antibody reverses the association of cPLA2α with the Golgi. Silencing of cPLA2α and inhibition of cPLA2α enzymatic activity using various inhibitors result in the diminished presence of the transmembrane junction proteins VE-cadherin, occludin, and claudin-5 at cell–cell contacts, and in their accumulation at the Golgi. Altogether, our data support the idea that VE-cadherin triggers the relocation of cPLA2α to the Golgi and that in turn, Golgi-associated cPLA2α regulates the transport of transmembrane junction proteins through or from the Golgi, thereby controlling the integrity of endothelial cell–cell junctions.  相似文献   

20.
The role of a cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) in neutrophil arachidonic acid release, platelet-activating factor (PAF) biosynthesis, NADPH oxidase activation, and bacterial killing in vitro, and the innate immune response to bacterial infection in vivo was examined. cPLA(2)-alpha activity was blocked with the specific cPLA(2)-alpha inhibitor, Pyrrolidine-1 (human cells), or by cPLA(2) -alpha gene disruption (mice). cPLA(2)-alpha inhibition or gene disruption led to complete suppression of neutrophil arachidonate release and PAF biosynthesis but had no effect on neutrophil NADPH oxidase activation, FcgammaII/III or CD11b surface expression, primary or secondary granule secretion, or phagocytosis of Escherichia coli in vitro. In contrast, cPLA(2)-alpha inhibition or gene disruption diminished neutrophil-mediated E. coli killing in vitro, which was partially rescued by exogenous arachidonic acid or PAF but not leukotriene B(4). Following intratracheal inoculation with live E. coli in vivo, pulmonary PAF biosynthesis, inflammatory cell infiltration, and clearance of E. coli were attenuated in cPLA(2)-alpha(-/-) mice compared with wild type littermates. These studies identify a novel role for cPLA(2)-alpha in the regulation of neutrophil-mediated bacterial killing and the innate immune response to bacterial infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号