首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of central and peripheral glucagon-like peptide-1 (GLP-1) on crop emptying in growing chicks. Intracerebroventricular injection of two concentrations of GLP-1 (15 and 60 pmol) similarly suppressed crop emptying, compared with control chicks. The delay in crop emptying induced by GLP-1 (15 pmol) was partly attenuated by co-administration with exendin (5-39) (600 pmol), a GLP-1 receptor antagonist, although exendin (5-39) alone did not affect crop emptying. On the other hand, intraperitoneal administration of several doses of GLP-1 (120, 300 and 3000 pmol) did not alter crop emptying. The present study revealed that central, but not peripheral, GLP-1 inhibits crop emptying in chicks.  相似文献   

2.
Objectives: To evaluate the efficacy of liraglutide, a new, stable, once‐daily human analog of glucagon‐like peptide‐1, in a new animal model of obesity. Research Methods and Procedures: Liraglutide was administered subcutaneously once daily (7 μg/kg for 7 weeks) to six female obese Göttingen minipigs. Food intake and feeding patterns were monitored using a novel automated feeding system that allowed continuous recording of food intake. Results: Food intake was strongly suppressed. A steady‐state level of reduced food intake was achieved within 3 weeks and was maintained for the remaining 4 weeks of the treatment period. During the 4‐week steady‐state period with liraglutide treatment, daily food intake was 7.3 ± 0.3 megajoule (MJ) compared with 18.4 ± 0.6 MJ in the pre‐treatment period and 19.2 ± 0.5 MJ in the post‐treatment period (p < 0.001). The food intake in the treatment period was equivalent to the amount of food that would have been offered to normal‐weight pigs for maintenance. Body weight decreased 4.3 ± 1.2 kg (4% to 5%) during the 7 weeks of treatment and increased 7.0 ± 1.0 kg during the 7 weeks of post‐treatment (p < 0.01). Appetite suppression was quickly reversed within 4 days after termination of liraglutide administration. Discussion: Overall, liraglutide was well tolerated and had a profound and persistent anorectic effect that resulted in weight loss. These results, in conjunction with the previously established glucose‐lowering efficacy of liraglutide, suggest that the anorectic actions of liraglutide will be very important in clinical trials of both obese patients with type 2 diabetes and obese non‐diabetic patients.  相似文献   

3.
We previously demonstrated that amylin inhibits food intake and gastric emptying in rats with half-maximal effective doses (ED(50)s) of 8 and 3 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 60%, respectively. In this study of identical design, rats received intravenous infusions of salmon calcitonin (sCT), rat calcitonin (rCT), rat calcitonin gene-related peptide (rCGRP), and rat adrenomedullin (rADM) for 3 h at dark onset, and food intake was measured for 17 h or for 15 min and gastric emptying of saline was measured during the final 5 min. sCT, rCGRP, and rADM inhibited food intake with estimated ED(50)s of 0.5, 26, and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 88, 90, and 49%, respectively. rCT was not effective at doses up to 100 pmol x kg(-1) x min(-1). sCT, rCGRP, rADM, and rCT inhibited gastric emptying with ED(50)s of 1, 130, 160, and 730 pmol x kg(-1) x min(-1) and maximal inhibitions of 60, 66, 60, and 33%, respectively. These results suggest that amylin and sCT may act by a common mechanism to decrease food intake, which includes inhibition of gastric emptying.  相似文献   

4.
CCK is a physiological inhibitor of gastric emptying and food intake. The pancreatic peptide amylin exerts similar actions, yet its physiological importance is uncertain. Objectives were to compare the dose-dependent effects of intravenous infusion of amylin and CCK-8 on gastric emptying and food intake in rats, and to assess whether physiological doses of amylin are effective. Amylin and CCK-8 inhibited gastric emptying with mean effective doses (ED(50)s) of 3 and 35 pmol x kg(-1) x min(-1) and maximal inhibitions of 60 and 65%, respectively. Amylin and CCK-8 inhibited food intake with ED(50)s of 8 and 14 pmol x kg(-1) x min(-1) and maximal inhibitions of 78 and 69%, respectively. The minimal effective amylin dose for each effect was 1 pmol x kg(-1) x min(-1). Our previous work suggests that this dose increases plasma amylin by an amount comparable to that produced by a meal. These results support the hypothesis that amylin acts as a hormonal signal to the brain to inhibit gastric emptying and food intake and that amylin produces satiety in part through inhibition of gastric emptying.  相似文献   

5.
Ohinata K  Inui A  Asakawa A  Wada K  Wada E  Yoshikawa M 《Peptides》2001,22(4):589-595
We found that proadrenomedullin N-terminal 20 peptide (PAMP) decreased dose-dependently (3-30 nmol/mouse) food intake after intra-third cerebroventricular administration in fasted ddY mice. Gastric emptying also was delayed after central injection of PAMP. In our previous study, PAMP was demonstrated to elicit hyperglycemia via bombesin (BN) receptor. Then, we examined whether the effects of PAMP on feeding and gastric emptying were induced through BN receptor. Surprisingly, PAMP-induced reductions in feeding and gastric emptying rate were not blocked by a BN antagonist, [D-Phe(6), Leu-NHEt(13), des-Met(14)]-BN (6-14). PAMP suppressed feeding in mice lacking gastrin-releasing peptide receptor or BN receptor subtype-3. These results indicate that centrally administered PAMP inhibits food intake, involving the delayed gastric emptying, not through BN receptors but through selective PAMP receptor.  相似文献   

6.
ABSTRACT

We previously found that equol, a metabolite of intestinal bacterial conversion from soy isoflavone daidzein, has female-specific anorectic effects. In the present study, we used seven-week-old female ovariectomized (OVX) Sprague Dawley rats to test the hypothesis that the anorectic effect of dietary daidzein may be attributed to delayed gastric emptying. Results suggest that dietary daidzein delays gastric emptying and that it has an anorectic effect with residual gastric contents, but not without gastric contents. Dietary equol significantly decreased daily food intake in the OVX rats without sleeve gastrectomy, but not in those with sleeve gastrectomy, suggesting that the accumulation of food in the stomach is required for the anorectic effect of equol to occur. These results support the hypothesis that the anorectic effect of dietary daidzein is attributed to delayed gastric emptying.  相似文献   

7.
The aim was to investigate the effects of intestinal electrical stimulation (IES) on food intake, body weight, and gastric emptying in rats. An experiment on food intake and weight change was performed in 22 rats on a control diet and 10 diet-induced obese (DIO) rats for 4 wk with IES or sham IES. The effect of IES on gastric emptying was performed in another 20 rats in the control group. We found that 1) in control rats, 4-wk IES resulted in a reduction of 18.2% in the total amount of food intake compared with sham-IES (P = 0.02); the rats treated with IES had a weight change of -1 +/- 7.8g (P = 0.03), which was equivalent to a weight loss of 6.2% due to IES when adjusted for normal growing. 2) Acute IES delayed gastric emptying by 20% in the control rats (P < 0.01). 3) In the DIO rats, 1-wk IES with the same parameters as those used in the control rats resulted in a significant reduction in the total amount of food intake (126.6 +/- 6.3 g vs. 116.9 +/- 3.2 g, P < 0.01). More reduction in food intake was noted, and a significant weight change was also observed when stimulation energy was increased. 4) No adverse events were observed in any of the experiments. In conclusion, IES delays gastric emptying, reduces food intake, and decreases weight gain in control growing rats. These data suggest that it is worthy to explore therapeutic potentials of IES for obesity.  相似文献   

8.
We here show that GLP-1 and the long-acting GLP-1 analogue, liraglutide, interfere with diabetes-associated apoptotic processes in the β-cell. Studies using primary neonatal rat islets showed that native GLP-1 and liraglutide inhibited both cytokine- and free fatty acid-induced apoptosis in a dose-dependent manner. The anti-apoptotic effect of liraglutide was mediated by the GLP-1 receptor as the specific GLP-1 receptor antagonist, exendin(9-39), blocked the effects. The adenylate cyclase activator, forskolin, had an anti-apoptotic effect similar to those of GLP-1 and liraglutide indicating that the effect was cAMP-mediated. Blocking the PI3 kinase pathway using wortmannin but not the MAP kinase pathways by PD98059 inhibited the effects of liraglutide. In conclusion, GLP-1 receptor activation has anti-apoptotic effect on both cytokine, and free fatty acid-induced apoptosis in primary islet-cells, thus suggesting that the long-acting GLP-1 analogue, liraglutide, may be useful for retaining β-cell mass in both type 1 and type 2 diabetic patients.  相似文献   

9.
Intraperitoneal urocortin inhibits gastric emptying and food intake in mice. We investigated corticotropin-releasing factor receptor (CRF-R) subtypes involved in intraperitoneal urocortin actions using selective CRF-R antagonists. Gastric emptying was measured 2 h after a chow meal, and food intake was measured hourly after an 18-h fast in mice. Urocortin (3 microg/kg ip) inhibited gastric emptying by 88%. The CRF-R1/CRF-R2 antagonist astressin B (30 microg/kg ip) and the selective CRF-R2 antagonist antisauvagine-30 (100 microg/kg ip) completely antagonized urocortin action, whereas the selective CRF-R1 antagonist CP-154,526 (10 mg/kg ip) had no effect. Urocortin (1-10 microg/kg ip) dose dependently decreased the 2-h cumulative food intake by 30-62%. Urocortin (3 microg/kg)-induced hypophagia was completely antagonized by astressin B (30 microg/kg ip) and partially (35 and 31%) by antisauvagine-30 (100 or 200 microg/kg ip). The CRF-R1 antagonists CP-154,526 or DMP904 (10 mg/kg ip) had no effect. Capsaicin did not alter urocortin-inhibitory actions while blocking the satiety effect of intraperitoneal CCK. These data indicate that intraperitoneal urocortin-induced decrease in feeding is only partly mediated by CRF-R2, whereas urocortin action to delay gastric emptying of a meal involves primarily CRF-R2.  相似文献   

10.
The post-prandial release of glucagon-like peptide-1 (GLP-1) from the distal gut appears to involve a neural reflex that arises from the proximal gut. The neuropeptide calcitonin gene-related peptide (CGRP)'s potent stimulatory effect on GLP-1 release was characterized, using the isolated vascularly perfused rat ileum. CGRP, but not its homolog amylin, induced a dose-dependent and sustained release of GLP-1. This effect was greatly reduced in the presence of CGRP(8-37), was abolished by galanin, potentiated by luminal glucose and unaffected by atropine. GIP enhanced, but did not potentiate, this effect. The results reveal how CGRP is involved in the complex regulation of GLP-1 release.  相似文献   

11.
The dorsomedial hypothalamic nucleus harbors leptin sensitive neurons and is intrinsically connected to hypothalamic nuclei involved in feeding behavior. However, it also receives ascending input from the visceroceptive neurons of the brainstem. We have identified a unique glucagon-like-peptide-2 containing neuronal pathway connecting the nucleus of the solitary tract with the dorsomedial hypothalamic nucleus. A glucagon-like-peptide-2 fiber plexus targets neurons expressing its receptor within the dorsomedial hypothalamic nucleus. Pharmacological and behavioral studies confirmed that glucagon-like-peptide-2 signaling is a specific transmitter inhibiting rodent feeding behavior and with potential long-term effects on body weight homeostasis. The glucagon-like-peptide-1 receptor antagonist, Exendin (9-39) is also a functional antagonist of centrally applied glucagon-like-peptide-2.  相似文献   

12.
Leptin interplays with other peptides to control feeding behaviour in humans and animals. Using exendin-4, an agonist of glucagon-like peptide-1, we investigated whether leptin modifies its effect on food intake in the rat. In the first series, exendin-4 alone (0.1, 2 or 10 microg per rat), leptin alone (0.1, 2, 10 or 100 microg per rat) or exendin-4 and leptin together (0.1 + 0.1, 2 + 2, 10 + 10, or 2 + 100 microg per rat, respectively) were injected once intraperitoneally. In the second series animals were injected either with exendin-4 (2 microg) alone, leptin (10 microg) alone, or leptin (10 microg) + exendin-4 (2 microg) daily for 5 subsequent days. At the lowest dose used, leptin and exendin-4 injected once together, but not separately, reduced significantly a 24-hour food intake. When used in higher doses, however, leptin did not change the exendin-4-dependent suppressory effect on food consumption. No significant differences in food intake were seen between rats treated repeatedly with exendin-4 only and animals injected with both drugs. Hence, leptin and exendin-4 may act additively to inhibit appetite when present in low concentrations while, at high leptin doses, this effect is abolished. The lack of synergistic effects of exendin-4 and high leptin concentrations on food intake may explain, at least in part, mechanisms responsible for leptin resistance in subjects with hyperleptinaemia.  相似文献   

13.
To investigate the acute effects of lactate on spontaneous feeding, we infused lactate in the hepatic portal vein (0.5, 1.0, and 1.5 mmol lactate/meal) or in the vena cava (1.0 and 1.5 mmol lactate/meal) of ad libitum-fed rats during their first spontaneous nocturnal meal. Infusions (5 min, 0.1 ml/min) were remotely controlled, and a computerized feeding system recorded meal patterns. In separate crossover tests, meal size decreased independent of the infusion route after 1.0 and 1.5 mmol but not after 0.5 mmol lactate. The subsequent intermeal interval (IMI) tended to decrease only after vena cava infusion of 1.0 mmol lactate. The size of the second nocturnal meal increased after the 1.0 mmol lactate infusion. Hepatic portal infusion of 1.5 mmol lactate increased the satiety ratio [subsequent IMI (min)/meal size (g)] by 175%, which was higher than the insignificant 43% increase after vena cava infusion. Hepatic portal infusion of 1.5 mmol lactate also increased systemic plasma lactate but not glucose concentration at 1 min after the end of infusion. The results are consistent with the idea that meal-induced increases in circulating lactate play a role in the control of meal size (satiation). Moreover, the results suggest that lactate also contributes to postprandial satiety and that the liver is involved in this effect. The exact mechanisms of lactate's inhibitory effects on feeding and the site(s) where lactate acts to terminate meals remain to be identified.  相似文献   

14.
The proglucagon-derived peptide family consists of three highly related peptides, glucagon and the glucagon-like peptides GLP-1 and GLP-2. Although the biological activity of glucagon as a counter-regulatory hormone has been known for almost a century, studies conducted over the past decade have now also elucidated important roles for GLP-1 as an antidiabetic hormone, and for GLP-2 as a stimulator of intestinal growth. In contrast to pancreatic glucagon, the GLPs are synthesized in the intestinal epithelial L cells, where they are subject to the influences of luminal nutrients, as well as to a variety of neuroendocrine inputs. In this review, we will focus on the complex integrative mechanisms that regulate the secretion of these peptides from L cells, including both direct and indirect regulation by ingested nutrients.  相似文献   

15.
The aim of this study was to investigate the mechanisms involved in the effect of glucagon-like peptide-1 (GLP-1) on the decrease in gastric mucosal blood flow (GMBF) induced by intragastric ethanol.After preparation of the stomach for GMBF recording, a probe was placed to the gastric mucosa and basal GMBF recordings were obtained by a laser Doppler flowmeter after a 30-minute stabilization period. Following GLP-1 (1000 ng/kg; i.p.) injection, 1 ml of absolute ethanol was applied to the gastric chamber and GMBF was recorded continuously during a 30-minute period. GLP-1 (1000 ng/kg; i.p.) prevented the decrease in GMBF induced by ethanol. Nitric oxide (NO) synthase inhibitor L-NAME, (30 mg/kg; s.c.), calcitonine gene-related peptide (CGRP) receptor antagonist CGRP-(8–37) (10μg/kg; i.p.), and cyclooxygenase inhibitor indomethacin (5 mg/kg; i.p.) all inhibited the GMBF-improving effect of GLP-1.We concluded that, NO, CGRP and prostaglandins may be involved in the effect of peripherally-injected GLP-1 on GMBF reduction induced by intraluminal ethanol.  相似文献   

16.
ABSTRACT

The study was aimed to compare the satiating effect of various protein hydrolysates in rats and examine the underlying mechanism associated with the satiety hormones. Food intake and portal satiety hormone levels were measured in rats. Enteroendocrine cell-lines were employed to study the direct effect of protein hydrolysates on gut hormone secretions. The results showed that oral preload of wheat gluten hydrolysate (WGH) suppressed food intake greater and longer than other hydrolysates. The portal peptide-YY levels in WGH-treated rats at 2 h and 3 h were higher than those in control- and lactalbumin hydrolysate (LAH)-treated rats. In a distal enteroendocrine cell model, WGH more potently stimulated glucagon-like peptide-1 secretion than LAH, and the effect was largely enhanced by pepsin/pancreatin digestion of WGH. These results suggest WGH is potent in activating enteroendocrine cells to release satiety hormones leading to the prolonged suppression of food intake.  相似文献   

17.
The truncated form of glucagon-like peptide-1 (TGLP-1, or proglucagon 78-108), secreted by the mammalian intestine, has potent pharmacological activities, stimulating insulin release and inhibiting gastric acid secretion. We have characterized high-affinity receptors for this peptide in rat isolated fundic glands. Scatchard analysis of binding studies using mono-125I-TGLP-1(7-36) amide as tracer showed a single class of binding site of Kd (4.4 +/- (SE) .08) x 10(-10) M, with a tissue concentration of 1.0 +/- 0.1 fmol sites/microgram DNA. Whole GLP-1 was approximately 700 times less potent in displacing tracer, while human GLP-2 and pancreatic glucagon produced no significant displacement at concentrations up to 10(-6) M. The data support a physiological role for TGLP-1 in the regulation of gastric acid secretion.  相似文献   

18.
Peptide YY3-36 [PYY(3-36)], a gastrointestinal peptide that is released into the circulation in response to ingesting a meal, has recently been suggested to play a role in controlling food intake. PYY(3-36) has been reported to inhibit food intake following peripheral administration in rodents and in human subjects. To more fully characterize the potential feeding actions of PYY(3-36), we examined the ability of a dose range of PYY(3-36) (0.3-3.0 nmol/kg) to affect liquid gastric emptying and daily 6-h food intake in male rhesus monkeys. Intramuscular PYY(3-36) produced a dose-related inhibition of saline gastric emptying that was maximal at a dose of 3 nmol/kg. Intramuscular PYY(3-36) administered before daily 6-h food access produced significant feeding reductions at doses of 1 and 3 nmol/kg. Analyses of the patterns of food intake across the 6-h period of food access revealed that PYY(3-36) increased the latency to the first meal and reduced average meal size without altering meal number. Although single doses of PYY(3-36) reduced intake, a suppressive effect on food intake was not sustained over multiple administrations across successive days. Together, these data suggest that PYY(3-36) has the ability to reduce food intake in acute test situations in nonhuman primates. Whether this is a physiological action of the endogenous peptide remains to be determined.  相似文献   

19.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

20.
Seven healthy volunteers were intubated with two double lumen nasogastric tubes, one in the stomach, the other in the duodenum. This system allows simultaneous sampling of gastric juice and separate intraduodenal perfusion with a dietary fat (fish oil, 1269 kJ). Gastrin-17 was infused i.v. at a rate of 40 pmol/kg/h throughout the study. Gastric lipase was measured at 15-min intervals as activity (tributyrin) and as immunoreactivity (ELISA). Infusion of gastrin-17 resulted in a stable increase in the plasma concentration from a basal concentration of 8.3±0.8 pmol/l to 41.4±4.2 pmol/l. Perfusion with fat reduced gastric lipase activity from 24.2±5.3 to 7.2±2.5 kU/l (P<0.05), and immunoreactivity from 0.7±0.1 to 0.42±0.1 mg/l (P<0.05). After termination of fat perfusion, gastric lipase secretion increased again, though not reaching preinhibitory concentrations. During the intraduodenal perfusion with fat the plasma concentrations of glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK) increased from 6.9±0.5 to 15.1±1.5 pmol/l (P<0.05) and from 1.2±0.4 to 3.8±0.9 pmol/l (P<0.05). This study reveals a negative effect of fat in the duodenum on gastric lipase secretion. This effect may be mediated by GLP-1 and/or CCK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号