首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
2.
We have previously shown that members of the ELR(+) CXC chemokine family, including IL-8; growth-related oncogenes alpha, beta, and gamma; granulocyte chemotactic protein 2; and epithelial neutrophil-activating protein-78, can mediate angiogenesis in the absence of preceding inflammation. To date, the receptor on endothelial cells responsible for chemotaxis and neovascularization mediated by these ELR(+) CXC chemokines has not been determined. Because all ELR(+) CXC chemokines bind to CXC chemokine receptor 2 (CXCR2), we hypothesized that CXCR2 is the putative receptor for ELR(+) CXC chemokine-mediated angiogenesis. To test this postulate, we first determined whether cultured human microvascular endothelial cells expressed CXCR2. CXCR2 was detected in human microvascular endothelial cells at the protein level by both Western blot analysis and immunohistochemistry using polyclonal Abs specific for human CXCR2. To determine whether CXCR2 played a functional role in angiogenesis, we determined whether this receptor was involved in endothelial cell chemotaxis. We found that microvascular endothelial cell chemotaxis in response to ELR(+) CXC chemokines was inhibited by anti-CXCR2 Abs. In addition, endothelial cell chemotaxis in response to ELR(+) CXC chemokines was sensitive to pertussis toxin, suggesting a role for G protein-linked receptor mechanisms in this biological response. The importance of CXCR2 in mediating ELR(+) CXC chemokine-induced angiogenesis in vivo was also demonstrated by the lack of angiogenic activity induced by ELR(+) CXC chemokines in the presence of neutralizing Abs to CXCR2 in the rat corneal micropocket assay, or in the corneas of CXCR2(-/-) mice. We thus conclude that CXCR2 is the receptor responsible for ELR(+) CXC chemokine-mediated angiogenesis.  相似文献   

3.
The influence of environmental factors (cytokines, matrix components, serum factors and O(2) level) on expression of receptors for angiogenic versus angiostatic CXC chemokines in human microvascular endothelial cells has not been extensively investigated. Our semi-quantitative RT-PCR analysis demonstrated that TNF-alpha and IFN-gamma repressed CXCR4 mRNA levels in immortalized human microvascular endothelial HMEC-1 cells after 4 h, whereas only TNF-alpha displayed inhibitory activity in primary human microvascular endothelial cells (HMVEC). CXCR4 mRNA expression was not affected by VEGF, GM-CSF, IL-1beta or various basal membrane matrix components, but was significantly up-regulated after serum starvation and/or hypoxic treatment of the microvascular endothelial cells. The alternative CXCL12 receptor, CXCR7/RDC1, was also up-regulated by hypoxia in HMEC-1 cells, although less consistently than CXCR4. Furthermore, hypoxia and serum starvation were required for cell surface display of CXCR4 and CXCL12 induction of ERK activation in HMEC-1 cells. In contrast, CXCR2 and CXCR3 mRNA levels remained, respectively, low and undetectable under all the conditions tested, and surface expression of CXCR2, CXCR3 and CXCR7 on the HMEC- 1 cells could not be demonstrated by FACS. In the human SK-MEL-5 melanoma cell line, CXCR4 mRNA expression was also increased under hypoxic conditions, whereas CXCR2 mRNA levels remained low and levels of CXCR3 and CXCR7 were undetectable. However, immunohistochemical staining of human metastatic melanoma sections demonstrated that CXCR2, CXCR3, CXCR4 and CXCR7 are expressed on tumor cells and, to a lesser extent, on endothelial cells. These results demonstrate that the tumor microenvironment regulates chemokine receptor expression through both cytokine and oxygen levels.  相似文献   

4.
Pulmonary hypoxia is a common complication of chronic lung diseases leading to the development of pulmonary hypertension. The underlying sustained increase in vascular resistance in hypoxia is a response unique to the lung. Thus we hypothesized that there are genes for which expression is altered selectively in the lung in response to alveolar hypoxia. Using a novel subtractive array strategy, we compared gene responses to hypoxia in primary human pulmonary microvascular endothelial cells (HMVEC-L) with those in cardiac microvascular endothelium and identified 90 genes (forming 9 clusters) differentially regulated in the lung endothelium. From one cluster, we confirmed that the bone morphogenetic protein (BMP) antagonist, gremlin 1, was upregulated in the hypoxic murine lung in vivo but was unchanged in five systemic organs. We also demonstrated that gremlin protein was significantly increased by hypoxia in vivo and inhibited HMVEC-L responses to BMP stimulation in vitro. Furthermore, significant upregulation of gremlin was measured in lungs of patients with pulmonary hypertensive disease. From a second cluster, we showed that CXC receptor 7, a receptor for the proangiogenic chemokine CXCL12, was selectively upregulated in the hypoxic lung in vivo, confirming that our subtractive strategy had successfully identified a second lung-selective hypoxia-responsive gene. We conclude that hypoxia, typical of that encountered in pulmonary disease, causes lung-specific alterations in gene expression. This gives new insights into the mechanisms of pulmonary hypertension and vascular loss in chronic lung disease and identifies gremlin 1 as a potentially important mediator of vascular changes in hypoxic pulmonary hypertension.  相似文献   

5.
The chemokine receptor CXCR4, which binds the chemokine stromal cell-derived factor 1, has been reported to be involved in the chemotaxis of inflammatory cells. In addition, AMD3100, an antagonist of CXCR4, has been reported to be an attractive drug candidate for therapeutic intervention in several disorders in which CXCR4 is critically involved. However, little is known about the therapeutic value of AMD3100 in the treatment of pulmonary fibrosis. In this study, we examined the effects of AMD3100 on a murine bleomycin-induced pulmonary fibrosis model. Concurrent administration of AMD3100 and bleomycin apparently attenuated bleomycin-induced pulmonary inflammation. In this process, an inhibition of neutrophil recruitment at early stage followed by the decrease of other inflammatory cell recruitment in the lung were observed. In addition, it also inhibited the expression of cytokines, including MCP-1, MIP-2, MIP-1alpha, and TGF-beta. In contrast, when AMD3100 was administered following bleomycin treatment, the bleomycin-induced lung inflammation progressed and resulted in severe pulmonary fibrosis. In this process, an increase of inflammatory cell recruitment, an up-regulation of lung MCP-1 and TGF-beta, and a remarkable activation of p44/42 MAPK in neutrophils were observed. U0126, an inhibitor of p44/42 MAPK, significantly abolished these effects. Thus, AMD3100 has dual effect on bleomycin-induced pulmonary fibrosis. Difference of inflammatory cell recruitment and activation might be associated with the dual effect of AMD3100 on bleomycin-induced pulmonary fibrosis.  相似文献   

6.
We previously showed increased expression of the ELR+, CXC chemokines in the lung after left pulmonary artery obstruction. These chemokines have been shown in other systems to bind their G protein-coupled receptor, CXCR(2), and promote systemic endothelial cell proliferation, migration, and capillary tube formation. In the present study, we blocked CXCR(2) in vivo using a neutralizing antibody and also studied mice that were homozygous null for CXCR(2). To estimate the extent of neovascularization in this model, we measured systemic blood flow to the left lung 14 days after left pulmonary artery ligation (LPAL). We found blood flow significantly reduced (67% decrease) with neutralizing antibody treatment compared with controls. However, blood flow was not altered in the CXCR(2)-deficient mice compared with wild-type controls after LPAL. To test for ligand availability, we measured macrophage inflammatory protein (MIP)-2 in lung homogenates after LPAL, because this is the predominant CXC chemokine previously shown to be increased after LPAL (22). MIP-2 protein was two- to fourfold higher in the left lung relative to the right lung in all treatment groups 4 h after LPAL and this increase did not differ among groups. We speculate that the CXCR(2)-deficient mice have compensatory mechanisms that mitigate their lack of gene expression and conclude that CXCR(2) contributes to chemokine-induced systemic angiogenesis after pulmonary artery obstruction.  相似文献   

7.
Angiogenesis after pulmonary ischemia is initiated by reactive O(2) species and is dependent on CXC chemokine growth factors, and its magnitude is correlated with the number of lavaged macrophages. After complete obstruction of the left pulmonary artery in mice, the left lung is isolated from the peripheral circulation until 5-7 days later, when a new systemic vasculature invades the lung parenchyma. Consequently, this model offers a unique opportunity to study the differentiation and/or proliferation of monocyte-derived cells within the lung. In this study, we questioned whether macrophage subpopulations were differentially expressed and which subset contributed to growth factor release. We characterized the change in number of all macrophages (MHCII(int), CD11C+), alveolar macrophages (MHCII(int), CD11C+, CD11B-) and mature lung macrophages (MHCII(int), CD11C+, CD11B+) in left lungs from mice immediately (0 h) or 24 h after left pulmonary artery ligation (LPAL). In left lung homogenates, only lung macrophages increased 24 h after LPAL (vs. 0 h; p<0.05). No changes in proliferation were seen in any subset by PCNA expression (0 h vs. 24 h lungs). When the number of monocytic cells was reduced with clodronate liposomes, systemic blood flow to the left lung 14 days after LPAL decreased by 42% (p<0.01) compared to vehicle controls. Furthermore, when alveolar macrophages and lung macrophages were sorted and studied in vitro, only lung macrophages secreted the chemokine MIP-2α (ELISA). These data suggest that ischemic stress within the lung contributes to the differentiation of immature monocytes to lung macrophages within the first 24 h after LPAL. Lung macrophages but not alveolar macrophages increase and secrete the proangiogenic chemokine MIP-2α. Overall, an increase in the number of lung macrophages appears to be critical for neovascularization in the lung, since clodronate treatment decreased their number and attenuated functional angiogenesis.  相似文献   

8.
MIP-2/CXCL2 is a murine chemokine related to human chemokines that possesses the Glu-Leu-Arg (ELR) activation motif and activates CXCR2 for neutrophil chemotaxis. We determined the structure of MIP-2 to 1.9 ? resolution and created a model with its murine receptor CXCR2 based on the coordinates of human CXCR4. Chemokine-induced migration of cells through specific G-protein coupled receptors is regulated by glycosaminoglycans (GAGs) that oligomerize chemokines. MIP-2 GAG-binding residues were identified that interact with heparin disaccharide I-S by NMR spectroscopy. A model GAG/MIP-2/CXCR2 complex that supports a 2:2 complex between chemokine and receptor was created. Mutants of these disaccharide-binding residues were made and tested for heparin binding, in vitro neutrophil chemotaxis, and in vivo neutrophil recruitment to the mouse peritoneum and lung. The mutants have a 10-fold decrease in neutrophil chemotaxis in vitro. There is no difference in neutrophil recruitment between wild-type MIP-2 and mutants in the peritoneum, but all activity of the mutants is lost in the lung, supporting the concept that GAG regulation of chemokines is tissue-dependent.  相似文献   

9.
Mice genetically deficient in the chemokine receptor CXCR4 or its ligand stromal cell-derived factor (SDF)-1/CXCL12 die perinatally with marked defects in vascularization of the gastrointestinal tract. The aim of this study was to define the expression and angiogenic functions of microvascular CXCR4 and SDF-1/CXCL12 in the human intestinal tract. Studies of human colonic mucosa in vivo and primary cultures of human intestinal microvascular endothelial cells (HIMEC) in vitro showed that the intestinal microvasculature expresses CXCR4 and its cognate ligand SDF-1/CXCL12. Moreover, SDF-1/CXCL12 stimulation of HIMEC triggers CXCR4-linked G proteins, phosphorylates ERK1/2, and activates proliferative and chemotactic responses. Pharmacological studies indicate SDF-1/CXCL12 evokes HIMEC chemotaxis via activation of ERK1/2 and phosphoinositide 3-kinase signaling pathways. Consistent with chemotaxis and proliferation, endothelial tube formation was inhibited by neutralizing CXCR4 or SDF-1/CXCL12 antibodies, as well as the ERK1/2 inhibitor PD-98059. Taken together, these data demonstrate an important mechanistic role for CXCR4 and SDF-1/CXCL12 in regulating angiogenesis within the human intestinal mucosa.  相似文献   

10.
11.

Background

Growth-differentiation factor-15 (GDF-15) is a stress-responsive, transforming growth factor-β-related cytokine, which has recently been reported to be elevated in serum of patients with idiopathic pulmonary arterial hypertension (IPAH). The aim of the study was to examine the expression and biological roles of GDF-15 in the lung of patients with pulmonary arterial hypertension (PAH).

Methods

GDF-15 expression in normal lungs and lung specimens of PAH patients were studied by real-time RT-PCR and immunohistochemistry. Using laser-assisted micro-dissection, GDF-15 expression was further analyzed within vascular compartments of PAH lungs. To elucidate the role of GDF-15 on endothelial cells, human pulmonary microvascular endothelial cells (HPMEC) were exposed to hypoxia and laminar shear stress. The effects of GDF-15 on the proliferation and cell death of HPMEC were studied using recombinant GDF-15 protein.

Results

GDF-15 expression was found to be increased in lung specimens from PAH patients, com-pared to normal lungs. GDF-15 was abundantly expressed in pulmonary vascular endothelial cells with a strong signal in the core of plexiform lesions. HPMEC responded with marked upregulation of GDF-15 to hypoxia and laminar shear stress. Apoptotic cell death of HPMEC was diminished, whereas HPMEC proliferation was either increased or decreased depending of the concentration of recombinant GDF-15 protein.

Conclusions

GDF-15 expression is increased in PAH lungs and appears predominantly located in vascular endothelial cells. The expression pattern as well as the observed effects on proliferation and apoptosis of pulmonary endothelial cells suggest a role of GDF-15 in the homeostasis of endothelial cells in PAH patients.  相似文献   

12.
IL-8, a member of the chemokine family, has been shown to play an important role in tumor growth, angiogenesis, and metastasis. The objective of this study was to determine the mechanism of IL-8-mediated angiogenesis. We examined the direct role of IL-8 in angiogenesis by examining IL-8 receptor expression on endothelial cells and their proliferation, survival, and matrix metalloproteinases (MMPs) production. We demonstrate that HUVEC and human dermal microvascular endothelial cells constitutively express CXCR1 and CXCR2 mRNA and protein. Recombinant human IL-8 induced endothelial cell proliferation and capillary tube organization while neutralization of IL-8 by anti-IL-8 Ab blocks IL-8-mediated capillary tube organization. Incubation of endothelial cells with IL-8 inhibited endothelial cell apoptosis and enhanced antiapoptotic gene expression. Endothelial cells incubated with IL-8 had higher levels of Bcl-x(L):Bcl-x(S) and Bcl-2:Bax ratios. Furthermore, incubation of endothelial cells with IL-8 up-regulated MMP-2 and MMP-9 production and mRNA expression. Our data suggest that IL-8 directly enhanced endothelial cell proliferation, survival, and MMP expression in CXCR1- and CXCR2-expressing endothelial cells and regulated angiogenesis.  相似文献   

13.
14.
15.
Survival from murine pulmonary nocardiosis is highly dependent on CXC chemokine receptor-2 (CXCR2) ligand-mediated neutrophil chemotaxis and subsequent clearance of the infectious agent Nocardia asteroides. Intratracheal inoculation of N. asteroides rapidly up-regulated the CXC chemokines macrophage inflammatory protein-2 (MIP-2) and KC within 24 h, with levels remaining elevated through day 3 before returning to near baseline levels by day 7. Coinciding with elevated MIP-2 and KC were the rapid recruitment of neutrophils and clearance of the organism. Anti-Ly-6G Ab-mediated neutrophil depletion before bacterial challenge resulted in strikingly increased mortality to N. asteroides infection. The relative contribution of MIP-2 in neutrophil recruitment was examined by anti-MIP-2 Ab treatment before nocardial infection. MIP-2 neutralization had no detrimental effects on survival, neutrophil recruitment, or bacterial clearance, suggesting the usage of additional or alternative CXCR2-binding ligands. The importance of the CXC family of chemokines was determined by the administration of an anti-CXCR2 Ab capable of blocking ligand binding in vivo. Anti-CXCR2 treatment greatly increased mortality by preventing neutrophil migration into the lung. Paralleling this impaired neutrophil recruitment was a 100-fold increase in lung bacterial burden. Combined, these observations indicate a critical role for neutrophils and CXC chemokines during nocardial pneumonia. These data directly link CXCR2 ligands and neutrophil recruitment and lend further support to the concept of CXC chemokine redundancy. For infections highly dependent on neutrophils, such as nocardial pneumonia, this is of critical importance.  相似文献   

16.
CXC and CC chemokine receptors on coronary and brain endothelia   总被引:11,自引:0,他引:11       下载免费PDF全文
BACKGROUND: Chemokine receptors on leukocytes play a key role in inflammation and HIV-1 infection. Chemokine receptors on endothelia may serve an important role in HIV-1 tissue invasion and angiogenesis. MATERIALS AND METHODS: The expression of chemokine receptors in human brain microvascular endothelial cells (BMVEC) and coronary artery endothelial cells (CAEC) in vitro and cryostat sections of the heart tissue was determined by light and confocal microscopy and flow cytometry with monoclonal antibodies. Chemotaxis of endothelia by CC chemokines was evaluated in a transmigration assay. RESULTS: In BMVEC, the chemokine receptors CCR3 and CXCR4 showed the strongest expression. CXCR4 was localized by confocal microscopy to both the cytoplasm and the plasma membrane of BMVEC. In CAEC, CXCR4 demonstrated a strong expression with predominantly periplasmic localization. CCR5 expression was detected both in BMVEC and CAEC but at a lower level. Human umbilical cord endothelial cells (HUVEC) expressed strongly CXCR4 but only weakly CCR3 and CCR5. Two additional CC chemokines, CCR2A and CCR4, were detected in BMVEC and CAEC by immunostaining. Immunocytochemistry of the heart tissues with monoclonal antibodies revealed a high expression of CXCR4 and CCR2A and a low expression of CCR3 and CCR5 on coronary vessel endothelia. Coronary endothelia showed in vitro a strong chemotactic response to the CC chemokines RANTES, MIP-1alpha, and MIP-1beta. CONCLUSIONS: The endothelia isolated from the brain display strongly both the CCR3 and CXCR4 HIV-1 coreceptors, whereas the coronary endothelia express strongly only the CXCR4 coreceptor. CCR5 is expressed at a lower level in both endothelia. The differential display of CCR3 on the brain and coronary endothelia could be significant with respect to the differential susceptibility of the heart and the brain to HIV-1 invasion. In addition, CCR2A is strongly expressed in the heart endothelium. All of the above chemokine receptors could play a role in endothelial migration and repair.  相似文献   

17.
该文应作者要求已撤稿。肺动脉平滑肌细胞(PASMCs)的迁移和增殖是肺动脉重塑进而造成肺动脉高压的主要病理基础。水通道蛋白1(AQP1)具有促进上皮细胞、内皮细胞迁移的作用,但机制不清。由于AQP1也表达于血管平滑肌细胞,推测AQP1可能参与缺氧诱导的PASMCs增殖及迁移。通过PCR和免疫印迹分析,检测AQP的表达以及缺氧对AQP表达水平的影响,并通过细胞迁移以及增殖实验观察AQP1在缺氧诱导的PASMCs迁移与增殖中的作用。AQP1在PASMCs和主动脉平滑肌细胞(AoSMCs)均表达,但缺氧只增加PASMCs中AQP1的表达,以及促进PASMCs的迁移与增殖。敲除AQP1可抑制PASMCs的增殖以及缺氧诱导的细胞增殖和迁移。过表达AQP1促进PASMCs的增殖和迁移。缺氧促进β联蛋白在PASMCs内的表达。敲除β联蛋白后,抑制AdAQP1所介导的PASMCs迁移与增殖。这些结果表明,缺氧可促进AQP1在肺动脉内的表达,AQP1可通过β联蛋白对PASMCs的增殖和迁移进行调节。  相似文献   

18.
19.
Chemokine receptors control several fundamental cellular processes in both hematopoietic and structural cells, including directed cell movement, i.e., chemotaxis, cell differentiation, and proliferation. We have previously demonstrated that CXCR3, the chemokine receptor expressed by Th1/Tc1 inflammatory cells present in the lung, is also expressed by human airway epithelial cells. In airway epithelial cells, activation of CXCR3 induces airway epithelial cell movement and proliferation, processes that underlie lung repair. The present study examined the expression and function of CXCR3 in human alveolar type II pneumocytes, whose destruction causes emphysema. CXCR3 was present in human fetal and adult type II pneumocytes as assessed by immunocytochemistry, immunohistochemistry, and Western blotting. CXCR3-A and -B splice variant mRNA was present constitutively in cultured type II cells, but levels of CXCR3-B greatly exceeded CXCR3-A mRNA. In cultured type II cells, I-TAC, IP-10, and Mig induced chemotaxis. Overexpression of CXCR3-A in the A549 pneumocyte cell line produced robust chemotactic responses to I-TAC and IP-10. In contrast, I-TAC did not induce chemotactic responses in CXCR3-B and mock-transfected cells. Finally, I-TAC increased cytosolic Ca(2+) and activated the extracellular signal-regulated kinase, p38, and phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B kinases only in CXCR3-A-transfected cells. These data indicate that the CXCR3 receptor is expressed by human type II pneumocytes, and the CXCR3-A splice variant mediates chemotactic responses possibly through Ca(2+) activation of both mitogen-activated protein kinase and PI 3-kinase signaling pathways. Expression of CXCR3 in alveolar epithelial cells may be important in pneumocyte repair from injury.  相似文献   

20.
CXC趋化因子受体4(CXCR4)是最主要的趋化因子受体之一,在多种类型细胞中均有表达,包括淋巴细胞、造血干细胞、内皮细胞和肿瘤细胞。CXCR4与其配体——基质细胞衍生因子1(SDF-1)(也称CXCL12)结合,能介导多种与细胞趋化、细胞存活或增殖相关信号传导通路。CXCR4与SDF-1轴涉及肿瘤的恶性演进、血管生成、转移和存活。因此,阻断CXCR4与SDF-1轴及下游信号通路成为相关治疗的分子靶标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号