首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
朱文静  刘志玮 《遗传》2021,(4):375-386
小鼠发育代谢表型库(Mouse Developmental and Metabolic Phenotype Repository,MDMPR)是一个致力于小鼠资源和表型数据实时共享的开放性平台,它依托于科技部重点研发计划“发育编程及其代谢调节”专项项目“建立小鼠发育代谢表型库”。该项目预计在5年内完成500个发育代谢相关小鼠敲除模型的建立,并对其表型数据进行标准化的解析、建立表型数据库。MDMPR作为一个资源及数据集成的库,由多个子系统作为支撑,包括ES细胞数据库、项目管理系统、繁育管理系统、精子库管理系统、表型分析系统,信息化管理深入到项目中每个环节,从基因突变ES细胞制备、基因突变小鼠制备、小鼠繁育,精子冻存到最终的表型分析、数据处理及展示,保证了MDMPR产生数据的真实性及实时性。MDMPR除了不断地推进项目进行,增加自身产生的数据外,也在积极的整合其他的资源及数据,如人特异性基因敲除ES细胞库、蛋白相互作用数据库(STRING)、核心转录调节环路(dbCoRc)和Enhancer-Indel数据库,今后还将进一步整合,帮助发育代谢及其他领域的研究人员能够一站式的获取所需资源和数据、加快研究进程,最终服务于全人类的医疗事业。  相似文献   

2.
Recently, a number of collaborative large-scale mouse mutagenesis programs have been launched. These programs aim for a better understanding of the roles of all individual coding genes and the biological systems in which these genes participate. In international efforts to share phenotypic data among facilities/institutes, it is desirable to integrate information obtained from different phenotypic platforms reliably. Since the definitions of specific phenotypes often depend on a tacit understanding of concepts that tends to vary among different facilities, it is necessary to define phenotypes based on the explicit evidence of assay results. We have developed a website termed PhenoSITE (Phenome Semantics Information with Terminology of Experiments: http://www.gsc.riken.jp/Mouse/), in which we are trying to integrate phenotype-related information using an experimental-evidence-based approach. The site's features include (1) a baseline database for our phenotyping platform; (2) an ontology associating international phenotypic definitions with experimental terminologies used in our phenotyping platform; (3) a database for standardized operation procedures of the phenotyping platform; and (4) a database for mouse mutants using data produced from the large-scale mutagenesis program at RIKEN GSC. We have developed two types of integrated viewers to enhance the accessibility to mutant resource information. One viewer depicts a matrix view of the ontology-based classification and chromosomal location of each gene; the other depicts ontology-mediated integration of experimental protocols, baseline data, and mutant information. These approaches rely entirely upon experiment-based evidence, ensuring the reliability of the integrated data from different phenotyping platforms.  相似文献   

3.
We have developed an open-source database system named “Pheno-Pub” to support a series of data-handling and publication tasks, including statistical analyses, data review, and web site construction, for mouse phenotyping experiments. This system is composed of three applications. “Mou-Stat” provides semiautomatic statistical analyses for a batch of phenotypic data, including a variety of conditions for group comparisons (e.g., different scales of measurement parameters). “Genotype Viewer” and “Strain Viewer” provide representation of genotype-driven and measurement parameter-driven views of phenotypic data; they highlight significant differences in genotypes and between strains, respectively. Direct links from the Strain Viewer web site to the Genotype Viewer web site provide flexible navigation in the exploration of phenotypic data. With these publication tools, phenotypic data can be made available on the Internet by simple operations. This system is expandable for a wide range of uses in phenotypic comparative analyses, including comparisons among different genotypes and strains and comparisons among groups exposed to different environmental conditions. Finally, Pheno-Pub provides advanced usability for both producers of experimental data and consumers of phenotypic information. Therefore, Pheno-Pub contributes significantly to the publication of data in various fields of phenotyping research and to broad data sharing, thereby promoting the understanding of the functions of the entire mouse genome.  相似文献   

4.
Mice provide a range of important models of human disease. As part of a broad program of metabolic phenotyping (metabotyping) the effects of gender and strain upon urinary metabolite composition and variation have been investigated using 1H NMR spectroscopy and chemometrics in the Alpk:ApfCD, C57BL10J and the "Nude mouse". By using Principal Components Analysis (PCA) and Soft Independent Modeling by Class Analogy (SIMCA), characteristic metabotypes for each strain were produced for both male and female animals. In all three strains, female urinary metabolic profiles were characterized by higher lactate, trimethylamine-N-oxide and lower trimethylamine concentrations relative to males. Both male and female Nude mice were phenotypically distinct from the Alpk:ApfCD and C57BL10J strains-the Nude mouse phenotypes being characterized by higher urinary creatinine, guanadinoacetic acid, dimethylamine, alpha-hydroxy-N-valeric acid and taurine levels and lower hippurate, citrate, creatine and succinate concentrations relative to those excreted by the two phenotypically normal mouse strains. These data show that Nude mice exhibit a wide variety of metabolic differences across a much wider range of pathways than has previously been thought, with potentially important considerations for studies that use the Nude mouse as a mouse model.  相似文献   

5.
6.
We have developed a metabolic profiling scheme based on direct-infusion Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The scheme consists of: (1) reproducible data collection under optimized FT-ICR/MS analytical conditions; (2) automatic mass-error correction and multivariate analyses for metabolome characterization using a newly developed metabolomics tool (DMASS software); (3) identification of marker metabolite candidates by searching a species-metabolite relationship database, KNApSAcK; and (4) structural analyses by an MS/MS method. The scheme was applied to metabolic phenotyping of Arabidopsis (Arabidopsis thaliana) seedlings treated with different herbicidal chemical classes for pathway-specific inhibitions. Arabidopsis extracts were directly infused into an electrospray ionization source on an FT-ICR/MS system. Acquired metabolomics data were comprised of mass-to-charge ratio values with ion intensity information subjected to principal component analysis, and metabolic phenotypes from the herbicide treatments were clearly differentiated from those of the herbicide-free treatment. From each herbicide treatment, candidate metabolites representing such metabolic phenotypes were found through the KNApSAcK database search. The database search and MS/MS analyses suggested dose-dependent accumulation patterns of specific metabolites including several flavonoid glycosides. The metabolic phenotyping scheme on the basis of FT-ICR/MS coupled with the DMASS program is discussed as a general tool for high throughput metabolic phenotyping studies.  相似文献   

7.
8.
Over the next several decades, biology is embarking on its most ambitious project yet: to annotate the human genome functionally, prioritizing and focusing on those genes relevant to development and disease. Model systems are fundamental prerequisites for this task, and genetically engineered mice (GEM) are by far the most accessible mammalian system because of their anatomical, physiological, and genetic similarity to humans. The scientific utility of GEM has become commonplace since the technology to produce them was established in the early 1980s. Conceptually, however, an efficiently coordinated high-throughput approach that permits correlation between newly discovered genes, functional properties of their protein products, and biological relevance of these products as drug targets has yet to be established. The discipline of veterinary anatomical pathology (hereafter referred to as pathology) is not immune to this requirement for evolution and adaptation, and to address relationships and tissue consequences between tens of thousands of genes and their cognate proteins, novel interdisciplinary technologies and approaches must emerge. Although many of the techniques of pathology are well established, in the context of pathology's contribution to functional annotation of the genome, several conceptually important and unresolved issues remain to be addressed. While an ever-increasing arsenal of genetic and molecular tool-sets are available to evaluate and understand the function of genes and their pathophysiological mechanisms, pathology will continue to play an essential role in confirming cause and effect relationships of gene function in development and disease. This role will continue to be dependent on keen observation, a systematic but disciplined approach, expert knowledge of strain-dependent anatomical differences and incidental lesions, and relevant tissue-based evidence. Miniaturization and high-throughput adaptation of these methods must also continue so that they can complement parallel phenotyping efforts, provide pathology-based data in pace with concurrent phenotyping efforts, and continue to find new utility in the collective effort of functional annotation.  相似文献   

9.
Determining the function of all mammalian genes remains a major challenge for the biomedical science community in the 21st century. The goal of the International Mouse Phenotyping Consortium (IMPC) over the next 10?years is to undertake broad-based phenotyping of 20,000 mouse genes, providing an unprecedented insight into mammalian gene function. This short article explores the drivers for large-scale mouse phenotyping and provides an overview of the aims and processes involved in IMPC mouse production and phenotyping.  相似文献   

10.
The study of mouse models is crucial for the functional annotation of the human genome. The recent improvements in mouse genetics now moved the bottleneck in mouse functional genomics from the generation of mutant mice lines to the phenotypic analysis of these mice lines. Simple, validated, and reproducible phenotyping tests are a prerequisite to improving this phenotyping bottleneck. We analyzed here the impact of simple variations in animal handling and housing procedures, such as cage density, diet, gender, length of fasting, as well as site (retro-orbital vs. tail), timing, and anesthesia used during venipuncture, on biochemical, hematological, and metabolic/endocrine parameters in adult C57BL/6J mice. Our results, which show that minor changes in procedures can profoundly affect biological variables, underscore the importance of establishing uniform and validated animal procedures to improve reproducibility of mouse phenotypic data.  相似文献   

11.
Chorea-acanthocytosis (CHAC) is a hereditary neurodegenerative disorder with autosomal recessive transmission, in which selective degeneration of striatum has been reported in brain pathology. Clinically, CHAC shows Huntington's disease-like neuropsychiatric symptoms and red blood cell acanthocytosis. Recently, we identified the gene, CHAC, encoding a novel protein, chorein, in which a deletion mutation was found in Japanese families with CHAC. In the present study, we have identified the mouse CHAC cDNA sequence and the exon-intron structures of the gene and produced a CHAC model mouse introducing no. 60-61 exon deletion corresponding to a human disease mutation by a gene-targeting technique. The mice began to show acanthocytosis and motor disturbance in old age. In behavioral observations, locomotor activity was significantly decreased and the contact time at social interaction test was decreased significantly in the model mice. In the brain pathology, many apoptotic cells were observed in the striatum of the mutant mice. In neurochemical determinations, the dopamine metabolite, homovanillic acid, concentration decreased significantly in the portion including the midbrain of the mutant mice. These findings are consistent with the human results reported elsewhere and indicate that the CHAC model mice showed a mild phenotype with late adult onset. The CHAC model mouse therefore provides a good model system to study the human disease.  相似文献   

12.
Recent advances in gene knockout techniques and the in vivo analysis of mutant mice, together with the advent of large-scale projects for systematic mouse mutagenesis and genome-wide phenotyping, have allowed the creation of platforms for the most complete and systematic analysis of gene function ever undertaken in a vertebrate. The development of high-throughput phenotyping pipelines for these and other large-scale projects allows investigators to search and integrate large amounts of directly comparable phenotype data from many mutants, on a genomic scale, to help develop and test new hypotheses about the origins of disease and the normal functions of genes in the organism. Histopathology has a venerable history in the understanding of the pathobiology of human and animal disease, and presents complementary advantages and challenges to in vivo phenotyping. In this review, we present evidence for the unique contribution that histopathology can make to a large-scale phenotyping effort, using examples from past and current programmes at Lexicon Pharmaceuticals and The Jackson Laboratory, and critically assess the role of histopathology analysis in high-throughput phenotyping pipelines.  相似文献   

13.
The Mouse Tumor Biology Database (MTB) is a Web-based resource that provides access to information on tumor frequency and latency, genetics and pathology in genetically defined mice (transgenics, targeted mutations and inbred strains). MTB is designed to serve as an information resource for cancer genetics researchers who use the laboratory mouse as a model system for understanding human disease processes. Data in MTB are obtained from the primary scientific literature and direct submissions by the research community. MTB is accessible from the Mouse Genome Informatics Web site (http://www. informatics.jax.org). User support is available for MTB via Email at mgi-help@informatics.jax.org  相似文献   

14.
We have undertaken an integrated chemical and morphological comparison of the amyloid-beta (Abeta) molecules and the amyloid plaques present in the brains of APP23 transgenic (tg) mice and human Alzheimer's disease (AD) patients. Despite an apparent overall structural resemblance to AD pathology, our detailed chemical analyses revealed that although the amyloid plaques characteristic of AD contain cores that are highly resistant to chemical and physical disruption, the tg mice produced amyloid cores that were completely soluble in buffers containing SDS. Abeta chemical alterations account for the extreme stability of AD plaque core amyloid. The corresponding lack of post-translational modifications such as N-terminal degradation, isomerization, racemization, pyroglutamyl formation, oxidation, and covalently linked dimers in tg mouse Abeta provides an explanation for the differences in solubility between human AD and the APP23 tg mouse plaques. We hypothesize either that insufficient time is available for Abeta structural modifications or that the complex species-specific environment of the human disease is not precisely replicated in the tg mice. The appraisal of therapeutic agents or protocols in these animal models must be judged in the context of the lack of complete equivalence between the transgenic mouse plaques and the human AD lesions.  相似文献   

15.
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.  相似文献   

16.
BackgroundMitochondrial disease is a general term for a disease caused by a decline in mitochondrial function. The pathology of this disease is extremely diverse and complex, and the mechanism of its pathogenesis is still unknown. Using mouse models that develop the disease via the same processes as in humans is the easiest path to understanding the underlying mechanism. However, creating a mouse model is extremely difficult due to the lack of technologies that enable editing of mitochondrial DNA (mtDNA).Scope of reviewThis paper outlines the complex pathogenesis of mitochondrial disease, and the difficulties in producing relevant mouse models. Then, the paper provides a detailed discussion on several mice created with mutations in mtDNA. The paper also introduces the pathology of mouse models with mutations including knockouts of nuclear genes that directly affect mitochondrial function.Major conclusionsSeveral mice with mtDNA mutations and those with nuclear DNA mutations have been established. Although these models help elucidate the pathological mechanism of mitochondrial disease, they lack sufficient diversity to enable a complete understanding. Considering the variety of factors that affect the cause and mechanism of mitochondrial disease, it is necessary to account for this background diversity in mouse models as well.General significanceMouse models are indispensable for understanding the pathological mechanism of mitochondrial disease, as well as for searching new treatments. There is a need for the creation and examination of mouse models with more diverse mutations and altered nuclear backgrounds and breeding environments.  相似文献   

17.
The agnostic screening performed by genome-wide association studies (GWAS) has uncovered associations for previously unsuspected genes. Knowledge about the functional role of these genes is crucial and laboratory mouse models can provide such information. Here, we describe a systematic juxtaposition of human GWAS-discovered loci versus mouse models in order to appreciate the availability of mouse models data, to gain biological insights for the role of these genes and to explore the extent of concordance between these two lines of evidence. We perused publicly available data (NHGRI database for human associations and Mouse Genome Informatics database for mouse models) and employed two alternative approaches for cross-species comparisons, phenotype- and gene-centric. A total of 293 single gene-phenotype human associations (262 unique genes and 69 unique phenotypes) were evaluated. In the phenotype-centric approach, we identified all mouse models and related ortholog genes for the 51 human phenotypes with a comparable phenotype in mice. A total of 27 ortholog genes were found to be associated with the same phenotype in humans and mice, a concordance that was significantly larger than expected by chance (p<0.001). In the gene-centric approach, we were able to locate at least 1 knockout model for 60% of the 262 genes. The knockouts for 35% of these orthologs displayed pre- or post-natal lethality. For the remaining non-lethal orthologs, the same organ system was involved in mice and humans in 71% of the cases (p<0.001). Our project highlights the wealth of available information from mouse models for human GWAS, catalogues extensive information on plausible physiologic implications for many genes, provides hypothesis-generating findings for additional GWAS analyses and documents that the concordance between human and mouse genetic association is larger than expected by chance and can be informative.  相似文献   

18.
The Mouse Genetics Project (MGP) at the Wellcome Trust Sanger Institute aims to generate and phenotype over 800 genetically modified mouse lines over the next 5 years to gain a better understanding of mammalian gene function and provide an invaluable resource to the scientific community for follow-up studies. Phenotyping includes the generation of a standardized biobank of paraffin-embedded tissues for each mouse line, but histopathology is not routinely performed. In collaboration with the Pathology Core of the Centre for Modeling Human Disease (CMHD) we report the utility of histopathology in a high-throughput primary phenotyping screen. Histopathology was assessed in an unbiased selection of 50 mouse lines with (n=30) or without (n=20) clinical phenotypes detected by the standard MGP primary phenotyping screen. Our findings revealed that histopathology added correlating morphological data in 19 of 30 lines (63.3%) in which the primary screen detected a phenotype. In addition, seven of the 50 lines (14%) presented significant histopathology findings that were not associated with or predicted by the standard primary screen. Three of these seven lines had no clinical phenotype detected by the standard primary screen. Incidental and strain-associated background lesions were present in all mutant lines with good concordance to wild-type controls. These findings demonstrate the complementary and unique contribution of histopathology to high-throughput primary phenotyping of mutant mice.KEY WORDS: Histopathology, High-throughput phenotyping, Mouse, Pathology  相似文献   

19.
Cerebral amyloid angiopathy (CAA) occurs in nearly every individual with Alzheimer's disease (AD) and Down's syndrome, and is the second largest cause of intracerebral hemorrhage. Mouse models of CAA have demonstrated evidence for increased gliosis contributing to CAA pathology. Nearly two thirds of Americans are overweight or obese, with little known about the effects of obesity on the brain, although increasingly the vasculature appears to be a principle target of obesity effects on the brain. In the current study we describe for the first time whether diet induced obesity (DIO) modulates glial reactivity, amyloid levels, and inflammatory signaling in a mouse model of CAA. In these studies we identify surprisingly that DIO does not significantly increase Aβ levels, astrocyte (GFAP) or microglial (IBA-1) gliosis in the CAA mice. However, within the hippocampal gyri a localized increase in reactive microglia were increased in the CA1 and stratum oriens relative to CAA mice on a control diet. DIO was observed to selectively increase IL-6 in CAA mice, with IL-1β and TNF-α not increased in CAA mice in response to DIO. Taken together, these data show that prolonged DIO has only modest effects towards Aβ in a mouse model of CAA, but appears to elevate some localized microglial reactivity within the hippocampal gyri and selective markers of inflammatory signaling. These data are consistent with the majority of the existing literature in other models of Aβ pathology, which surprisingly show a mixed profile of DIO effects towards pathological processes in mouse models of neurodegenerative disease. The importance for considering the potential impact of ceiling effects in pathology within mouse models of Aβ pathogenesis, and the current experimental limitations for DIO in mice to fully replicate metabolic dysfunction present in human obesity, are discussed. This article is part of a Special Issue entitled: Animal Models of Disease.  相似文献   

20.
The DA strain of Theiler's murine encephalomyelitis virus, a member of the cardiovirus genus of picornaviruses, induces a restricted and persistent infection associated with a demyelinating process following intracerebral inoculation of mice; both virus infection and the immune response are believed to contribute to the late white matter disease. We now report that intraperitoneal inoculation with DA produces an acute myositis that progresses to a chronic inflammatory muscle disease in CD-1 mice as well as several inbred mouse strains. Some mouse strains also develop central nervous system white matter disease and a focal myocarditis. Infectious virus in skeletal muscle falls to undetectable levels 3 weeks postinoculation (p.i.), although viral genome persists for at least 12 weeks p.i., the longest period of observation. Severe combined immunodeficient animals have evidence of muscle pathology as long as 5 weeks p.i., suggesting that DA virus is capable of inducing chronic muscle disease in the absence of an immune response. The presence in immunocompetent mice, however, of prominent muscle inflammation in the absence of infectious virus suggests that the immune system also contributes to the pathology. T lymphocytes are the predominant cell type infiltrating the skeletal muscle during the chronic disease. This murine model may further our understanding of virus-induced chronic myositis and help to clarify the pathogenesis of human inflammatory myopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号