首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the arrival of effective symptomatic treatments and the promise of drugs that may delay progression, we now need to identify Alzheimer’s disease (AD) at an early stage of the disease. To diagnose AD earlier and more accurately, attention has been directed toward peripheral biochemical markers. This article reviews promising potential cerebrospinal fluid (CSF) biomarkers for AD focussing on their role in clinical diagnosis. In particular, two biochemical markers, CSF total tau (t-tau) protein and the 42 amino acid form of β-amyloid (Aβ42), perform satisfactorily enough to achieve a role in the clinical diagnostic settings of patients with dementia together with the cumulative information from basic clinical work-up, genetic screening, and brain imaging. These CSF markers are particularly useful to discriminate early or incipient AD from age-associated memory impairment, depression, and some secondary dementias. In order to discriminate AD from other primary dementia disorders, however, more accurate and specific markers are needed. Preliminary evidence strongly suggests that quantification of tau phosphorylated at specific sites in CSF improves early detection, differential diagnosis, and tracking of disease progression in AD.  相似文献   

2.
The molecular genetics of Alzheimer's disease   总被引:1,自引:0,他引:1  
The major pathological characteristic of Alzheimer's disease (AD) is the abnormal deposition of β-amyloid peptide (Aβ) in the brain. In some early onset cases, the disease develops because of mutations in the gene coding for β-amyloid precursor protein (βAPP). However, the majority of AD families in the early onset subgroup are linked to a locus on chromosome 14. The genetic analysis and age of onset correlates of both the βAPP gene and the chromosome 14 locus are discussed. We speculate on the mechanisms by which the βAPP mutations cause the disease and discuss recent advances in βAPP processing that may be relevant to the pathogenesis of the late-onset (common) form of the disease. In addition, we review the association of theAPOE locus with late-onset familial and nonfamilial disease. Further work is required to establish the effects of this locus on disease occurrence, age of onset, and progression. The molecular pathology of ApoE in relation to AD development and the identification of the chromosome 14 gene will greatly contribute to a general pathogenic model of AD, and will clarify the role of βAPP and its derivatives.  相似文献   

3.
Summary.  Protein misfolding and aberrant polymerization are salient features of virtually all central neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease, triplet repeat disorders, tauopathies, and prion diseases. In many instances, a single amino acid change can predispose to disease by increasing the production and/or changing the biophysical properties of a specific protein. Possible pathogenic similarities among the cerebral proteopathies suggest that therapeutic agents interfering with the proteopathic cascade might be effective against a wide range of diseases. However, testing compounds preclinically will require disease-relevant animal models. Numerous transgenic mouse models of β-amyloidosis, tauopathy, and other aspects of AD have now been produced, but none of the existing models fully recapitulates the pathology of AD. In an attempt to more faithfully replicate the human disease, we infused dilute AD-brain extracts into Tg2576 mice at 3-months of age (i.e. 5–6 months prior to the usual onset of β-amyloid deposition). We found that intracerebral infusion of AD brain extracts results in: 1) Premature deposition of β-amyloid in eight month-old, β-amyloid precursor protein (βAPP)-transgenic mice (Kane et al., 2000); 2) augmented amyloid load in the injected hemisphere of 15 month-old transgenic mice; 3) evidence for the spread of pathology to other brain areas, possibly by neuronal transport mechanisms; and 4) tau hyperphosphorylation (but not neurofibrillary pathology) in axons passing through the injection site. The seeding of β-amyloid in vivo by AD brain extracts suggests pathogenic similarities between β-amyloidoses such as AD and other cerebral proteopathies such as the prionoses, and could provide a new model for studying the proteopathic cascade and its neuronal consequences in neurodegenerative diseases. Received June 28, 2001 Accepted August 6, 2001 Published online June 26, 2002  相似文献   

4.
(1) Huperzine A, a promising therapeutic agent for Alzheimer’s disease (AD), was tested for its effects on cholinergic and monoaminergic dysfunction induced by injecting β-amyloid peptide-(1–40) into nucleus basalis magnocellularis of the rat. (2) Bilateral injection of 10 μg β-amyloid peptide-(1–40) into nucleus basalis magnocellularis produced local deposits of amyloid plaque and functional abnormalities detected by microdialysis. In medial prefrontal cortex, reductions in the basal levels and stimulated release of acetylcholine, dopamine, norepinephrine, and 5-hydroxytryptamine were observed. However, oral huperzine A (0.18 mg/kg, once daily for 21 consecutive days) markedly reduced morphologic abnormalities at the injection site in rats infused with β-amyloid peptide-(1–40). Likewise, this treatment ameliorated the β-amyloid peptide-(1–40)-induced deficits in extracellular acetylcholine, dopamine, and norepinephrine (though not 5-hydroxytryptamine) in medial prefrontal cortex, and lessened the reduction in nicotine or methoctramine-stimulated release of acetylcholine and K+-evoked releases of acetylcholine and dopamine. (3) The present results provide the first direct evidence that huperzine A acts to oppose neurotoxic effects of β-amyloid peptide on cholinergic, dopaminergic, and noradrenergic systems of the rat forebrain.  相似文献   

5.
Accumulating evidence suggests that the conversion of Aβ peptides to soluble, neurotoxic polymers is the key event in the development of Alzheimer’s disease (AD). Moreover, interactions between Aβ peptides and neuronal membrane lipids likely play a vital role in developing the neurotoxicity associated with AD. The aim of this study is to assess whether lipid matrix of neuronal membranes is affected by the accumulation of Aβ peptides in double transgenic mouse model of AD expressing both mutant human β-amyloid precursor protein (APP) and presenilin 1 (PS1). We apply high pressure liquid chromatography with an evaporative light scattering detector to compare levels of cholesterol, galactocerebrosides, and phospholipid subclasses simultaneously in cortex samples between AD double transgenic mice at 4 months of age when Aβ production and amyloid plaque deposition is just beginning and at 9 months, when there is advanced Aβ levels and plaque deposition compared to age-matched wild-type (B6/SJL) mice. Both cholesterol (CL) and phospholipids (PL) are significantly lower in 9-month-old AD mice than the same age of B6/SJL mice. Among PL subclasses, phosphatidylethanolamine (PE), phosphatidylserine (PS) and phosphatidylcholine (PC) are selectively reduced in 9-month-old AD mice. The molar ratios of CL to PL in 9-month-old AD mice (1.19 ± 0.27) were significantly higher than those of 9-month-old B6/SJL mice (0.81 ± 0.08). In keeping with decreased levels of PL, there are also significant reductions of very long-chain n-3 fatty acids (docosahexaenoic acid) and n-6 fatty acid (arachidonic acid) in 9-month-old AD mice. On the other hand, ratios of total n-6 to total n-3 fatty acids were significantly higher in 9-month-old AD mice than in the same age of B6/SJL mice. Taken together, our present data support a role for the interactions of amyloid-β peptide and neuronal membranes in the subsequent development of AD. Special issue article in honor of Dr. George DeVries.  相似文献   

6.
The deposition of βA4-amyloid in senile plaques in the brain and small cerebral vessels is one of the pathological hallmarks of Alzheimer’s disease (AD). Serine protease inhibitors (serpins) such as α1-antitrypsin and α1-antichymotrypsin have been found to be associated with β-amyloid deposits; interest in their role in the pathogenesis of AD has therefore recently increased. We have analyzed α1-antitrypsin phenotypes in a sample of 29 Polish patients with probable Alzheimer’s disease. We have found an increased frequency of the PI*M3 allele (0.1897) in patients in comparison with the general population control (0.0563). Received: 8 May 1996 / Revised 28 June 1996  相似文献   

7.
Several factors have highlighted the vasculature in Alzheimer's disease (AD): Cerebral amyloid angiopathy (CAA) is common, amyloid fibrils emanate from the vascular basement membrane (VBM), and similar forms of β-amyloid are found in vascular and parenchymal amyloid accumulations. The present article discusses the presence of microvascular pathology in AD. Microangiopathy, in addition to neurofibrillary tangles, senile plaques, and CAA, is a common pathologic hallmark of AD. VBM components are associated with amyloid plaques, and nonamyloidotic alterations of the VBM occur in brain regions susceptible to AD lesions. Also, intra-VBM perivascular cells (traditionally called pericytes), a subset of which share the immunophenotype of microglia and other mononuclear phagocytic system (MPS) cells, have been implicated in vascular alterations and cerebrovascular amyloid deposition. Perivascular and parenchymal MPS cells have access to several sources of the β-amyloid protein precursor, including platelets, circulating white cells, and neurons. MPS cells would thus be ideally situated to uptake and process the precursor, and deposit β-amyloid in a fashion analogous to that seen in other forms of systemic and cerebral amyloidoses.  相似文献   

8.
Alzheimer's disease (AD) is caused by the accumulation of β-amyloid protein (Aβ) in the brain. The aggregation of β-amyloid protein to higher molecular weight fibrillar forms is also considered to be an important step in the pathogenesis of the disease. The memory problems associated with AD are likely to be caused by changes in synaptic plasticity. Recent studies suggest that Aβ binds to the α 7 nicotinic acetylcholine receptor (α 7 nAChR), which plays an important role in synaptic plasticity and memory. A loop domain localized towards the C-terminus of the extracellular region of the receptor has been identified as forming part of a putative Aβ-binding site. In cell culture experiments, the binding of Aβ to the α 7 nAChR has been found to cause an increase in the level of acetylcholinesterase, which is also increased around amyloid plaques in the AD brain. These studies indicate that the Aβ-binding site on the α 7 nAChR receptor is an important new target for therapeutic development in AD.  相似文献   

9.
Establishment of diagnostic measures for early stage Alzheimer’s disease (AD) and mild cognitive impairment (MCI) is of crucial importance. Using surface enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS), antibody-assisted MS of cerebrospinal fluid (CSF) has enabled quantitative analysis of the ratio of β-amyloid (Aβ) peptides, Aβ1-42/Aβ1-40, which has a diagnostic value for AD/MCI. To apply the MS analysis to a far wider range of CSF samples, we have established a method to analyze Aβ peptides expressed in 100 μl CSF samples quantitatively. Pretreatment of CSF samples by limit-filtration to condense peptides, and modified washing procedure using urea as denaturant, Aβ peptides of interest can be assessed with higher sensitivity by five to tenfolds to the original method. This improvement enables quantitative analysis of Aβ species from a residual amount of CSF samples, which will be occasionally obtained in case of lumbar anesthesia prior to operation and spinal tap performed for routine diagnostic purposes. Prevalence of the new procedure as laboratory test, especially among the elderly consulting for neurological clinic, will enhance the number of subjects diagnosed at early stage of AD/MCI.  相似文献   

10.
Pathogenesis of Alzheimer’s disease (AD), which is characterised by accumulation of extracellular deposits of β-amyloid peptide (Aβ) in the brain, has recently been linked to vascular disorders such as ischemia and stroke. Aβ is constantly produced in the brain from amyloid precursor protein (APP) through its cleavage by β- and γ-secretases and certain Aβ species are toxic for neurones. The brain has an endogenous mechanism of Aβ removal via proteolytic degradation and the zinc metalloproteinase neprilysin (NEP) is a critical regulator of Aβ concentration. Down-regulation of NEP could predispose to AD. By comparing the effects of hypoxia and oxidative stress on expression and activity of the Aβ-degrading enzyme NEP in human neuroblastoma NB7 cells and rat primary cortical neurones we have demonstrated that hypoxia reduced NEP expression at the protein and mRNA levels as well as its activity. On contrary in astrocytes hypoxia increased NEP mRNA expression. Special issue dedicated to Dr. Moussa Youdim.  相似文献   

11.
Chronic cerebral hypoperfusion (CCH) increases the risk of Alzheimer disease (AD) through several biologically plausible pathways, but the relationship between CCH and the development of AD remains uncertain. To investigate expression of APP, BACE1 and Aβ in the hippocampus of BCCAO rats and study pathophysiological mechanism of AD from CCH. CCH rat model was established by chronic bilateral common carotid artery occlusion (BCCAO). Behavior was evaluated after BCCAO with Morris water maze and open-field task. Expression of Aβ was measured by enzyme linked immunosorbent assay (ELISA). β-Amyloid precursor protein cleavage enzyme 1 (BACE1) and β-amyloid precursor protein (APP) were tested by ELISA, Western blotting and RT-PCR. Cognitive impairment occurred with CCH by Morris water maze test and open-field task. The BACE1 and Aβ level in BCCAO rats was more increased than sham-operation control rats (P < 0.01) but APP had no difference(P > 0.05). The expression of BACE1 and Aβ has no inter-grouop difference in BCCAO rats (P > 0.05). The level of BACE1 and Aβ had positive correlation with cognitive impairment (P < 0.01) while no correlation was observed between APP and cognitive impairment. Chronic cerebral ischemia contributes to cognitive impairment and vascular pathogenesis of Alzheimer’s disease that chronic cerebral hypoperfusion increases BACE1 and Aβ level in brain.  相似文献   

12.
(1) Nicotinic acetylcholine receptors in central nervous system are thought to be new targets for Alzheimer’s disease. However, the most involved nicotinic receptor subtype in Alzheimer’s disease is unclear. α4β2 receptor is the most widely spread subtype in brain, involving in several important aspects of cognitive and other functions. We constructed cell line by transfecting human amyloid precursor protein (695) gene into SH-EP1 cells which have been transfected with human nicotinic receptor α4 subunit and β2 subunit gene, to observe effects of α4β2 receptors activation on β-amyloid, expecting to provide a new cell line for drug screening and research purpose. (2) Liposome transfection was used to express human amyloid precursor protein (695) gene in SH-EP1-α4β2 cells. Function of the transfected α4β2 receptors was tested by patch clamp. Effects of nicotine and epibatidine (selective α4β2 nicotinic receptor agonist) on β-amyloid were detected by Western blot and ELISA. Effects of nicotine and epibatidine on amyloid precursor protein (695) mRNA level were measured using real-time PCR. (3) Human amyloid precursor protein (695) gene was stably expressed in SH-EP1-α4β2 cells; Nicotine (1 μM) and epibatidine (0.1 μM) decreased intracellular and secreted β-amyloid in the cells; and activation of α4β2 receptors did not affect amyloid precursor protein (695) mRNA level. (4) These results suggest that the constructed cell line, expressing both amyloid precursor protein (695) gene and human nicotinic receptor α4 subunit and β2 subunit gene, might be useful for screening specific nicotinic receptor agonists against Alzheimer’s disease. Alteration of Aβ level induced by activation of α4β2 nAChR in our study might occur at a post-translational level.  相似文献   

13.

Background  

In recent years, it has been gradually realized that bacterial inclusion bodies (IBs) could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D). As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further.  相似文献   

14.
Summary Although chronic inflammatory reactions have been proposed to cause neuronal degeneration associated with Alzheimer’s disease (AD), the role of prostaglandins (PGs), one of the secretory products of inflammatory reactions, in degeneration of nerve cells has not been studied. Our initial observation that PGE1-induced differentiated neuroblastoma (NB) cells degenerate in vitro more rapidly than those induced by RO20-1724, an inhibitor of cyclic nucleotide phosphodiesterase, has led us to postulate that PGs act as a neurotoxin. This study has further investigated the effects of PGs on differentiated NB cells in culture. Results showed that PGA1 was more effective than PGE1 in causing degeneration of differentiated NB cells as shown by the cytoplasmic vacuolation and fragmentation of soma, nuclei, and neurites. Because increased levels of ubiquitin and β-amyloid have been implicated in causing neuronal degeneration, we studied the effects of PGs on the levels of these proteins during degeneration of NB cells in vitro by an immunostaining technique, using primary antibodies to ubiquitin and β-amyloid. Results showed that PGs increased the intracellular levels of ubiquitin and β-amyloid prior to degeneration, whereas the degenerated NB cells had negligible levels of these proteins. These data suggest that PGs act as external neurotoxic signals which increase levels of ubiquitin and β-amyloid that represent one of the intracellular signals for initiating degeneration of nerve cells.  相似文献   

15.
Alteration of glycoprotein glycans often changes various properties of the glycoprotein. To understand the significance of N-glycosylation in the pathogenesis of early-onset familial Alzheimer’s disease (AD) and in β-amyloid (Aβ) production, we examined whether the mutations in the amyloid precursor protein (APP) gene found in familial AD affect the N-glycans on APP. We purified the secreted forms of wild-type and mutant human APPs (both the Swedish type and the London type) produced by transfected C17 cells and determined the N-glycan structures of these three recombinant APPs. Although the major N-glycan species of the three APPs were similar, both mutant APPs contained higher contents of bisecting N-acetylglucosamine and core-fucose residues as compared to wild-type APP. These results demonstrate that familial AD mutations in the polypeptide backbone of APP can affect processing of the attached N-glycans; however, whether these changes in N-glycosylation affect Aβ production remains to be established. Keiko Akasaka-Manya and Hiroshi Manya contributed equally to this work.  相似文献   

16.
Summary Metal-catalyzed oxidation (MCO) can lead to damage of bio-molecules and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). The amino acid residues, tyrosine, histidine and methionine, have been proposed to play important roles in metal mediated oxidative stress and subsequent reactions of amyloid β peptide (Aβ) a major contributor in the pathogenesis of AD. The MCO of Aβ residues, particularly histidine, methionine and tyrosine, and reviewed. MCO of Aβ histidine and tyrosine residues can facilitate oligomerization and may play a role in both amyloid formation and Aβ neurotoxicity. Further work is needed to determine the importance of Aβ oxidation in AD and the role of Aβ oxidation products and oxidative stress in disease progression. The mechanisms of Aβ MCO are complex and multiple reaction products can form. Further study is needed to determine the mechanisms by which Aβ MCO occursin vivo. In addition, new analytical methods are required to monitor the formation of Aβ MCO products formed during AD. The copper-H2O2 redox system provides a chemical model by which Aβ MCO can be studiedin vitro and can be used to produce oxidatively modified amino acid residues for use as standards in developing new analytical methods to monitor Aβ MCO.  相似文献   

17.
The formation of β-amyloid peptide (Aβ) is initiated from cleavage of amyloid precursor protein (APP) by a family of protease, α-, β-, and γ-secretase. Sub W, a substrate peptide, consists of 10 amino acids, which are adjacent to the β-cleavage site of wild-type APP, and Sub M is Swedish mutant with double mutations on the left side of the β-cleavage site of APP. Sub W is a normal product of the metabolism of APP in the secretary pathway. Sub M is known to increase the efficiency of β-secretase activity, resulting in a more specific binding model compared to Sub W. Three-dimensional structures of Sub W and Sub M were studied by CD and NMR spectroscopy in water solution. On the basis of these structures, interaction models of β-secretase and substrate peptides were determined by molecular dynamics simulation. Four hydrogen bonds and one water-mediated interaction were formed in the docking models. In particular, the hydrogen bonding network of Sub M-BACE formed spread over the broad region of the active site of β-secretase (P5-P3′), and the side chain of P2-Asn formed a hydrogen bond specifically with the side chain of Arg235. These are more favorable to the cleavage of Sub M by β-secretase than Sub W. The two substrate peptides showed different tendency to bind to β-secretase and this information may useful for drug development to treat and prevent Alzheimer’s disease.  相似文献   

18.
Alzheimer’s disease (AD) is a neurodegenerative disorder that affects about 35 million people worldwide. Current drugs for AD only treat the symptoms and do not interfere with the underlying pathogenic mechanisms of the disease. AD is characterized by the presence of β-amyloid (Aβ) plaques, neurofibrillary tangles, and neuronal loss. Identification of the molecular determinants underlying Aβ-induced neurodegeneration is an essential step for the development of disease-modifying drugs. Recently, an impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease. TGF-β1 is a neurotrophic factor responsible for the initiation and maintenance of neuronal differentiation and synaptic plasticity. The deficiency of TGF-β1 signaling is associated with Aβ pathology and neurofibrillary tangle formation in AD animal models. Reduced TGF-β1 signaling seems to contribute both to microglial activation and to ectopic cell-cycle re-activation in neurons, two events that contribute to neurodegeneration in the AD brain. The neuroprotective features of TGF-β1 indicate the advantage of rescuing TGF-β1 signaling as a means to slow down the neurodegenerative process in AD.  相似文献   

19.
Alzheimer's Disease (AD), the most common age-related neurodegenerative disorder, is characterized by progressive cognitive decline, synaptic loss, the formation of extracellular β-amyloid plaques and intracellular neurofibrillary tangles, and neuronal cell death. Despite the massive neuronal loss in the ‘late stage’ of disease, dendritic spine loss represents the best pathological correlate to the cognitive impairment in AD patients. The ‘amyloid hypothesis’ of AD recognizes the Aβ peptide as the principal player in the pathological process. Many lines of evidence point out to the neurotoxicity of Aβ, highlighting the correlation between soluble Aβ oligomer accumulation, rather than insoluble Aβ fibrils and disease progression. Pathological increase of Aβ in AD brains, resulting from an imbalance between its production, aggregation and clearance, might target mitochondrial function promoting a progressive synaptic impairment. The knowledge of the exact mechanisms by which Aβ peptide impairs neuronal function will help us to design new pharmacological tools for preventing AD neurodegeneration.  相似文献   

20.
A two-wave technique of calciometry with the use of a fluorescence dye, fura-2/AM, was applied for examination of the effect of a protein, β-amyloid (the main component of senile plaques in Alzheimer’s disease), on calcium homeostasis in cultured neurons of the rat hippocampus; β-amyloid was added to the culture medium. In most neurons, the effect of β-amyloid appeared as a more than twofold increase in the basic calcium concentration, as compared with the control (153.4 ± 11.5 and 71.7 ± 5.4 nM, respectively; P < 0.05). The characteristics of calcium transients induced by application of hyperpotassium solution also changed; the amplitude of these transients decreased, and the duration of a part corresponding to calcium release from the cell (rundown of the transient) increased. The mean amplitude of calcium transients under control conditions was 447.5 ± 20.1 nM, while after incubation in the presence of β-amyloid this index dropped to 278.4 ± 22.6 nM. Under control conditions, the decline phase of calcium transients lasted, on average, 100 ± 6 sec, while after incubation of hippocampal cell cultures in the presence of β-amyloid this phase lasted 250 ± 10 sec. Therefore, an excess of β-amyloid influences significantly calcium homeostasis in the nerve cells by disturbing functions of the calcium-controlling systems, such as voltage-operated calcium channels of the plasma membrane and calcium stores of the mitochondria and endoplasmic reticulum. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 9–12, January–February, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号