首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterial strain able to degrade various sulfated galactans (carrageenans and agar) was isolated from the marine red alga Delesseria sanguinea. From the cell-free supernatant of cultures grown on crude lambda-carrageenan, a kappa-carrageenase was purified by ammonium sulfate fractionation, gel filtration on Sephacryl S 200 HR and ion-exchange chromatography on DEAE--Sepharose-CL6B. The purified kappa-carrageenase was detected as a single protein upon SDS/PAGE. Its molecular mass was estimated at 40 kDa. Activity was observed against kappa-carrageenan over the pH range 5.0-8.5 and was optimal at pH 7.2 in Tris buffer or 7.0 in Mops buffer. The enzyme activity remained stable at 30 degrees C, but only for up to 1 h at 40 degrees C. Analysis of the degradation products of the kappa-carrageenase by gel filtration and 13C-NMR spectroscopy indicated that the enzyme degrades kappa-carrageenan down to the level of the kappa-neocarratetraose sulfate. The properties of this new enzyme are compared with those of previously characterized carrageenases.  相似文献   

2.
We report here cloning from the marine gliding bacterium Cytophaga drobachiensis of kappa-carrageenase, a glycoside hydrolase involved in the degradation of kappa-carrageenan. Structural features in the nucleotide sequence are pointed out, including the presence of an octameric omega sequence similar to the ribosome-binding sites of various eukaryotes and prokaryotes. The cgkA gene codes for a protein of 545 aa, with a signal peptide of 35 aa and a 229-aa-long posttranslationaly processed C-terminal domain. The enzyme displays the overall folding and catalytic domain characteristics of family 16 of glycoside hydrolases, which comprises other beta-1,4-alpha-1,3-D/L- galactan hydrolases, beta-1,3-D-glucan hydrolases (laminarinases), beta- 1,4-1,3-D-glucan hydrolases (lichenases), and beta-1,4-D-xyloglucan endotransglycosylases. In order to address the origin and evolution of CgkA, a comprehensive phylogenetic tree of family 16 was built using parsimony analysis. Family-16 glycoside hydrolases cluster according to their substrate specificity, regardless of their phylogenetic distribution over eubacteria and eukaryotes. Such a topology suggests that the general homology between laminarinases, agarases, kappa- carrageenases, lichenases, and xyloglucan endotransglycosylases has arisen through gene duplication, likely from an ancestral protein with laminarinase activity.   相似文献   

3.
An extracellular agarase from a Cytophaga species   总被引:3,自引:2,他引:1       下载免费PDF全文
1. An extracellular enzyme has been isolated from cultures of the bacterium growing on agar or porphyran. 2. Partial purification of the enzyme has been achieved by precipitation with ammonium sulphate followed by gel filtration on DEAE-Sephadex A-50. 3. The optimum conditions for the enzyme acting on porphyran are pH7·2 and a temperature of 40–41°. 4. The enzyme has an endoaction, producing a rapid decrease in viscosity of agar or porphyran solutions with little development of reducing power. 5. From the action of the enzyme on various polysaccharides, it is concluded that the enzyme is specific for the agarose structure.  相似文献   

4.
5.
The specificity of an agarase from a Cytophaga species   总被引:5,自引:1,他引:4  
1. The extracellular agarase from a Cytophaga species was shown to have no action on neoagarobiose, neoagarotetraose or their analogues containing 6-O-methyl-d-galactose residues. 2. The action of the enzyme on neoagaro-octaose suggests that scission of the central beta-d-galactosidic linkage, to form two molecules of tetrasaccharide, is the preferred mode of action; however, both exterior d-galactosidic linkages in the octasaccharide and both in neoagarohexaose are hydrolysed at a somewhat lower rate. 3. Sulphated oligosaccharides produced by prolonged enzyme action on porphyran have a minimum degree of polymerization of about 8-10units. 4. For such sulphated oligosaccharides to be further hydrolysed by enzyme action, it is suggested that an unmodified neoagarotetraose residue must be present in the oligosaccharide. 6. A new method for determining the degree of polymerization of these large oligosaccharides is described.  相似文献   

6.
1. Two bacteria were isolated from sea water by the enrichment culture technique, both of which could utilize the galactan sulphate, porphyran, as sole source of carbon. 2. From the cells of one bacterium, classified as a Cytophaga sp., hydrolytic enzymes were isolated. 3. Partial purification of the enzymes is described and some of the properties of the principal enzymes have been studied. 4. The action of the enzymes on several galactan sulphates of red algae suggests that an agarase is present in the mixture.  相似文献   

7.
Cellulases (EC 3.2.1.4) of a Cytophaga species WTHC 2421 (ATCC 29474) were found in the soluble portion of the cell (the periplasm and the cytoplasm) and on the membrane. Cell-free cellulases were not found. Most of the carboxymethylcellulase activity associated with reduction of viscosity was membrane bound, whereas most of the carboxymethylcellulose (CMC) saccharifying activity was soluble. The CMC-saccharifying activity was increased 534 X by purification procedures which included ammonium sulfate precipitation and molecular exclusion chromatography with Sephadex G-75 and Biogel p-100. Periplasmic carboxymethycellulase had a molecular weight of 6250 and cytoplasmic carboxymethylcellulase had a molecular weight of 8650. Analytical ultracentrifugation of the periplasmic carboxymethylcellulase (CMCase) indicated that it had a low molecular density. The chromatographic fraction containing periplasmic CMCase also contained enzyme activity against crystalline cellulose. The activity against crystalline cellulose was 238 X higher than the activity shown by the whole cell. The reaction of the enzyme with either CMC or dewaxed cotton produced only glucose. The enzyme was slightly inhibited by the presence of 0.01% (w/v) glucose, lactose, or cellobiose, but it was not affected by sucrose, and exhibited increased activity in the presence of xylose and fructose.  相似文献   

8.
The present paper describes an efficient single step chromatographic method for purification of C-Phycocyanin from three cyanobacterial species, i.e., Spirulina sp. (freshwater), Phormidium sp. (marine water) and Lyngbya sp. (marine water). C-Phycocyanin from these cyanobacterial species was purified to homogeneity and some of their properties were investigated. The purification involves a multistep treatment of the crude extract by fractional precipitation with ammonium sulfate, followed by ion-exchange chromatography on DEAE-Sepharose CL-6B column. Pure C-Phycocyanin was finally obtained from Spirulina, Phormidium, and Lyngbya spp. with purity ratio (A620/A280) 4.42, 4.43, and 4.59, respectively, further the purity and homogeneity were confirmed by native and SDS-PAGE. The estimated molecular weights of purified C-PC from Spirulina, Phormidium, and Lyngbya spp. were 112, 131, and 81 kDa, respectively. SDS-PAGE of pure C-Phycocyanin yielded two bands corresponding to alpha and beta subunits. The results of SDS-PAGE demonstrate the same molecular weight of beta subunits (24.4 kDa) for all the three cyanobacterial species, whereas the molecular weight of the alpha subunit is different for all (17 kDa Spirulina sp., 19.1 kDa Phormidium sp., 15.2 kDa Lyngbya sp.). Thus, the C-Phycocyanin was characterized as (alphabeta)3 for Spirulina and Phormidium spp., while as (alphabeta)2 for Lyngbya sp.  相似文献   

9.
We found that a psychrophilic bacterium isolated from Antarctic seawater, Cytophaga sp. KUC-1, abundantly produces aspartase [EC4.3.1.1], and the enzyme was purified to homogeneity. The molecular weight of the enzyme was estimated to be 192,000, and that of the subunit was determined to be 51,000: the enzyme is a homotetramer. L-Aspartate was the exclusive substrate. The optimum pH in the absence and presence of magnesium ions was determined to be pH 7.5 and 8.5, respectively. The enzyme was activated cooperatively by the presence of L-aspartate and by magnesium ions at neutral and alkaline pHs. In the deamination reaction, the K(m) value for L-aspartate was 1.09 mM at pH 7.0, and the S(1/2) value was 2.13 mM at pH 8.5. The V(max) value were 99.2 U/mg at pH 7.0 and 326 U/mg at pH 8.5. In the amination reaction, the K(m) values for fumarate and ammonium were 0.797 and 25.2 mM, respectively, and V(max) was 604 U/mg. The optimum temperature of the enzyme was 55 degrees C. The enzyme showed higher pH and thermal stabilities than that from mesophile: the enzyme was stable in the pH range of 4.5-10.5, and about 80% of its activity remained after incubation at 50 degrees C for 60 min. The gene encoding the enzyme was cloned into Escherichia coli, and its nucleotides were sequenced. The gene consisted of an open reading frame of 1,410-bp encoding a protein of 469 amino acid residues. The amino acid sequence of the enzyme showed a high degree of identity to those of other aspartases, although these enzymes show different thermostabilities.  相似文献   

10.
11.
12.
13.
Cytophaga johnsonae Stanier strain C21 (C. johnsonae C21) contains phosphatidylethanolamine (PE), an unusual glycine-containing lipid (glycine lipid), and two kinds of unidentified lipid as major lipid components. One of the latter lipids was identified by chemical and physicochemical methods as iso-3-hydroxy fatty acid, -amide linked to ornithine and esterified to iso-nonhydroxy fatty acid (ornithine lipid). The other lipid was identified as a sulfonolipid by a tracer experiment using 35S. PE, glycine lipid and sulfonolipid were found in all seven species of Cytophage examined, namely, C. huchinsonii, C. heparina, C. johnsonae C21, C. aquatilis, and three unidentified species of Cytophaga. However, ornithine lipid was found only in the latter five species. By contrast, a serine-containing lipid, which is a specific lipid component of Flavobacterium species, was not found in any species of Cytophaga examined. The possible use and significance of amino acid-containing lipids and sulfonolipids as chemosystematic markers of the Cytophaga species are discussed.  相似文献   

14.
A method is described for obtaining a highly active proteolytic enzyme from aMicrosporum species. This protease was purified (200-fold) from a cell-free culture medium by concentration with Carbowax, ammonium sulfate fractionation, charcoal and Celite filtration, calcium phosphate gel treatment, and column chromatography. The pH and temperature optima are 6.8 and 35 C respectively. Requirement of one or more free sulfhydryl group(s) for enzyme activity was indicated by inhibition withp-chloromercuric benzoate. Ethylenediaminetetraacetic acid also caused inhibition of proteolytic activity, which suggests involvement of a metal ion. The enzyme appears to be most active in the reduced form;l-cysteine and 2,3 dimercapto-l-propanol doubled the rate of activity. It has an approximate molecular weight of 51,000 to 69,000. The enzyme was highly active on all proteins examined.  相似文献   

15.
A glycogen-debranching enzyme from Cytophaga   总被引:7,自引:0,他引:7  
  相似文献   

16.
《Process Biochemistry》2007,42(12):1571-1578
A Bacillus sp. isolated from the Sundarbans region of the Bay of Bengal (NCBI GenBank Accession no. AY723697) which can tolerate 10% (w/v) NaCl, produces esterase optimally in Marine Broth 2216 medium containing 1% (w/v) NaCl. The enzyme was purified 42.7-fold with 6.4% recovery, (specific activity 569.2 U/mg protein) by ammonium sulphate precipitation followed by anion and cation exchange chromatography. The serine type esterolytic enzyme has a molecular weight of 35.0 kDa and is denatured into polypeptides of molecular weights 20 kDa and 15 kDa. The esterase was most active at pH 8.0, the pH of the seawater at the site of collection and is stable in the pH range 6.0–9.0. The optimum temperature of activity of this esterase is 45 °C and the enzyme is very stable after 1 h pre-incubation at 50 °C. Our esterase shows about 100% activity when incubated with 1 M NaCl, the activity drops to about 50% when incubated with 2.5 M sodium chloride and the enzyme is completely inactivated when 4 M NaCl is present during reaction. The esterase is almost inactivated by Ca2+, Hg2+ and Fe3+ ions, reducing agents and detergent. Interestingly, Co2+, a known inhibitor of many enzymes, preserved 70% of the activity of this esterase. Specific activity of the esterase increases more than twofold in the presence of water-miscible organic solvents as compared to that in aqueous buffer. When incubated for a period of 10 days in the presence of 30–70% dimethylsufoxide (DMSO), the specific activity increased by approximately two–threefold compared to the enzyme in aqueous buffer throughout the period of study. Specific activity between 1283 and 525 U/mg was maintained by our enzyme when incubated with 50% DMSO for 10 days. The enzyme was most active on p-nitrophenyl acetate, ethyl acetate, alpha isomer of naphthyl acetate but shows relatively lesser activity towards triglycerides of fatty acids. Certain characteristics, such as molecular weight, effects of NaCl, metal ions (Zn2+ and Mg2+) and reactivity towards para-nitrophenyl and aliphatic esters were strikingly similar to already described marine bacterial derived esterases. Extreme stability in DMSO could make this enzyme a potential immobilized biocatalyst for application in non-aqueous based continuous bioprocesses. Higher specific activity and purification factor, better thermo tolerance and solvent stability would make our enzyme more attractive for biotechnological applications than the marine microbial derived esterases described so far.  相似文献   

17.
The first ribonuclease (RNase) from the Cytophaga-Flavobacterium-Bacteroides phylum, dominant in the marine environment, and also from the first Bizionia species isolated from the tropics was purified and characterized. Extracellular RNase production occurred when the culture medium contained 5-7% (w/v) NaCl. The 53.0 kDa enzyme was purified 29 folds with a recovery of 4% and specific activity of 630unit/mg protein. The pH and temperature optima are 6.5 and 35 degrees C, respectively and the enzyme retains more than half of its activity (relative to optimal assay conditions) after 1h pre-incubation separately with 5% (w/v) NaCl or from pH 5.0 to 8.5 or at 50 degrees C. Dithiothreitol and beta-mercaptoethanol do not inhibit whereas human placental RNase inhibitor protein halves the RNase activity. While Mg(2+), Ba(2+) and Ca(2+) enhanced the enzyme activity, Fe(2+), Cu(2+) and Hg(2+) inactivated it. This RNase degrades uracil containing nucleic acids only. Our isolate could be a novel renewable source of deoxyribonuclease (DNase)--free RNase enzyme.  相似文献   

18.
A yellow-pigmented, gram-negative, gliding bacterium isolated from an industrial water spray air humidification system was implicated as a causative agent in several occurrences of lung disease with hypersensitivity pneumonitis-like symptoms. The bacterium, designated WF-164, lacked microcysts or fruiting bodies and had a DNA base composition of 34.8 mol% of guanine plus cytosine. Gliding, flexing, nonflagellated cells measuring 0.3 by 3.5 to 8.9 micron were observed by using light and electron microscopy. Tests to determine utilization of selected carbohydrates revealed an amylolitic, chitinoclastic, noncellulytic bacterium. A number of additional biochemical and physiological tests were performed. DNA homology studies detected a 77.8% similarity to Cytophaga aquatilis (ATCC 29551). Comparisons of cellular fatty acid and carbohydrate contents of isolate WF-164 with a Flexibacter sp., several Cytophaga spp., and Flavobacterium reference strains revealed similar patterns to that of C. aquatilis. On the basis of these characteristics, isolate WF-164 was identified as a new Cytophaga sp.  相似文献   

19.
The conditions for culture storage, inoculum preparation, and growth of a Cytophaga species, constitutive with respect to yeast-lytic enzymes, have been established in shake-flask studies and in 5 liter fermentor experiments. A low cost medium was adopted for 900 liter-scale fermentation and gave an enzyme activity in the fermentation broth somewhat greater than the comparable laboratory-scale one.  相似文献   

20.
Production of an extracellular enzyme complex (carrageenase) was studied by examining cell-free fluids from cultures of a marine Cytophaga, 1k-C783, growing on different media. Among artificial sea water salts, only NaCl and MgCl2 were utilized by the organism to produce carrageenase. The minimal concentrations of suitable combinations of NaCl and MgCl2 were found to be 0.05 M NaCl plus 0.25 M MgCl2, and 0.15 M NaCl plus 0.15 M MgCl2. KCl and CaCl2 did not have any role in carrageenase production in ZoBell 2216 E broth medium. Carrageenase was synthesized continuously within the resting cells and was released from the cells as well as in the growing cells, when nutrient had been supplied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号