首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results obtained from X-ray diffraction as well as from conformational analysis of Ag-DNA fibres are presented. For small percentages of Ag+ bound and high humidity, the B-DNA form is maintained. As the percentage of Ag+ is increased, the helical parameters of the B-DNA are modified. These modifications are directly related to the percentage of G-C bases. The periodicity of the DNA fibres are perturbed as Ag+ is mainly bound to G-C pairs and, thus, only the equatorial diffracted intensities can be compared to values calculated from molecular models. It is shown, by this way, that the first binding site is located on N7 of G. A second site is situated between N3 and N1 of the G-C pair, at the place of a hydrogen bond. A molecular model of the Ag-DNA complex is proposed and shown to be in agreement with experimental data. Results obtained allow to get some information on the binding of other ions such as Cu2+ and Hg2+ which give very little modification of the fibre X-ray patterns.  相似文献   

2.
The copper(I) and silver(I) binding properties of the beta fragment of recombinant mouse metallothionein I have been studied by electronic absorption and circular dichroism spectroscopy. When possible, the stoichiometry of the species formed was confirmed by electrospray mass spectrometry. The behaviour observed differs from that reported for the native protein. Titration of either Zn3-beta MT at pH 7 or apo-beta MT at pH 3 with Cu+ leads to the formation of species having the same stoichiometry and structure: Cu6-beta MT, Cu7-beta MT and Cu10-beta MT. In the first stage of the titration of Zn3-beta MT with Cu+ at pH 7 one additional species of formula Cu4Zn1-beta MT was detected. In contrast, the titration of Zn3-beta MT at pH 7.5 and of apo-beta MT at pH 2.5 with Ag+ proceeds through different reaction pathways, affording ZnxAg3-beta MT, Ag6-beta MT and Ag9-beta MT or Ag3-beta MT, Ag6-beta MT and Ag9-beta MT, respectively. The CD envelope corresponding to species with the same stoichiometric ratio, Ag6-beta MT and Ag9-beta MT, indicates that they have a different structure at each pH value. On the basis of the differences observed, the postulated similarity between copper and silver binding to metallothionein may be questioned.  相似文献   

3.
Using Positron Emission Tomography (PET) and specific radioligands, dopaminergic D2 (DA-D2 receptors) and benzodiazepine receptors (BZ-receptors) were studied in living animals during normal and pathological conditions. In vivo characterization of both receptors was performed using two highly specific antagonists namely: 11C-Ro 15 1788 for BZ-receptors and 76 Br-Bromospiperone for DA-D2 receptors. Changes in 11c-Ro 15 1788 specific binding to BZ-receptors were observed during convulsive seizures. After MPTP treatment, a decrease in the 76 Br-Bromospiperone striatal specific binding was observed, correlated with the establishment of a Parkinson-like syndrome.  相似文献   

4.
Ag+-induced Ca2+ release in isolated sarcoplasmic reticulum (SR) was studied by the stopped flow method monitoring chlortetracycline fluorescence change. After improving the experimental procedure, the initial rate of Ca2+ release could be determined more precisely than before. Micromolar concentrations of Ag+ specifically enhanced Ca2+ efflux from heavy fraction of SR vesicles (HSR). This specific effect was referred to as Ag+-induced calcium release. The Ag+-induced Ca2+ efflux was activated by caffeine and ATP, but was inhibited by Mg2+ and procaine. Further, Ag+ enhanced the Ca2+-induced Ca2+ release over the whole range of Ca2+ concentrations, similarly to ATP. Parallel to Ca2+ efflux, Mg2+ efflux, measured by the same method, was also activated by Ag+. Choline permeability determined by the light scattering method was also activated by Ag+. The results suggest that Ag+ binds to the activation site of the Ca2+-induced Ca2+ release channel and opens the channel. The Ag+ binding site is different from the Ca2+ binding site but similar to the ATP binding site.  相似文献   

5.
Previous studies have shown that the isotype of an antibody response is selected, in part, by the inhibition of isotype-specific suppression. The antisuppressor model predicts that isotype selection is initiated through an interaction between Ag, Ig, and a T cell-derived factor within 6 h of immunization. This report characterizes some of these molecules and their contribution to isotype regulation. Cultures of murine spleen cells stimulated with the T cell-dependent Ag SRBC led to Ag-specific IgG and IgA responses that could be suppressed and then antisuppressed by a molecular complex produced by mixing purified serum Ig with the supernatant of Ag-pulsed macrophages co-cultured with T cells. The supernatants from separate cultures of Ag-pulsed macrophages and rIL-1 alpha stimulated CD4+ T cells, could be pooled and mixed with Ig to produce functional antisuppressive complexes thereby allowing the factors from the different cell types to be studied separately. Adsorption of the co-culture or the rIL-1 alpha stimulated T cell supernatants against monoclonal IgG or IgA, removed IgG and IgA binding factors, respectively, and abrogated the ability to enhance the corresponding isotype. The adherent material could be recovered and used to reconstitute enhancement by the supernatants depleted of the binding factors. When affinity purified IgG or IgA was used as the source of Ig within the antisuppressive complexes, the enhancement of the antibody response was limited to the isotype of the regulatory Ig used to form the complex. Thus, manipulation of the antisuppressive molecules has a predictable effect on isotype selection. Release of isotype-specific binding factors by CD4+ cells by rIL-1 alpha supports the hypothesis that T cell circuits play a role in initiating isotype regulation.  相似文献   

6.
The interaction between azurin from Pseudomonas aeruginosa and Ag(I), Cu(II), Hg(II), was investigated as a function of protein state, i.e. apo-, reduced and oxidised azurin. Two different metal binding sites, characterized by two different spectroscopic absorbancies, were detected: one is accessible to Ag(I) and Cu(II) but not to Hg(II); the other one binds Ag(I) and Hg(II) but not copper. When added in stoichiometric amount, Ag(I) shows high affinity for the redox center of apo-azurin, to which it probably binds by the -SH group of Cys112; it can displace Cu(I) from reducedazurin, while it does not bind to the redox center of oxidizedazurin. Kinetic experiments show that Ag(I) binding to the reduced form is four times faster than binding to the apo-form. This result suggests that metal binding requires a conformational rearrangement of the active site of the azurin. Interaction of Ag(I) or Hg(II) ions to the second metal binding site, induces typical changes of UV spectrum and quenching of fluorescence emission.  相似文献   

7.
The ionophoretic activity of PGBx, an oligomeric mixture synthesized from 15-dehydro PGB1, with different cations was measured using arsenazo III-entrapped liposomes. The order of ionophoretic activity was Zn2+ greater than Co2+ greater than Mn2+ greater than Cu2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. The intrinsic fluorescence of PGBx was quenched by the binding of divalent cations as well as by La3+ and H+. Quenching by K+ and Na+ was minimal. The order of quenching strength of divalent cations was Zn2+ greater than Co2+ greater than Cu2+ = Mn2+ greater than Ca2+ greater than Ba2+ greater than Sr2+ greater than Mg2+. Binding affinities of these cations determined by a murexide indicator method were in good agreement with that determined by the fluorescence quenching reaction. The cation binding affinity of PGBx in aqueous solutions correlates with the ionophoretic activity in liposomes. The binding affinity for K+ was estimated from the inhibition by K+ of Ca2+ binding by PGBx. Although PGBx has a lower selectivity for divalent cation binding than the ionophore A23187, the characteristics of the binding affinity of these two compounds for various ions were similar. The pK of PGBx as determined by fluorescence quenching was 6.7. The molecular weight of the divalent cation binding unit was estimated to be about 680, with each PGBx molecule having three such binding sites. The binding of Ca2+ to such a site is one-to-one.  相似文献   

8.
We report new spectroscopic properties for a range of silver-metallothionein species. The binding reactions that take place following addition of Ag+ to rabbit liver apoMT 2, and the apo alpha and -beta fragments have been studied using the techniques of circular dichroism (CD) and emission spectroscopy. Titrations carried out at 20 degrees C and 55 degrees C reveal for the first time the formation of a sequence of clusters (Ag6-MT, Ag12-MT and, finally, Ag18-MT) as Ag+ is added to rabbit apoMT 2. (The division of mammalian metallothioneins into two major subforms, MT 1 and MT 2, is based on differences in molecular charge, which results from differences in the sequence of amino acids that do not involve the cysteines.) It is proposed that the novel Ag18-MT complex forms with a structure that involves a well defined three-dimensional structure, in the same manner as that recently reported for the Hg18-MT complex (Cai, W. and Stillman, M. J., (1988) J. Am. Chem. Soc. 110, 7872-7873). Addition of silver in excess of 20 mol equivalents leads to the collapse of this structure. At the elevated temperatures, it is suggested that the protein can exert cooperativity so that completely filled domains are formed rather than mixtures of complexes. This contrasts with the kinetic product in which metals are bound across the peptide chain forming more random "cross-linked" regions in place of the cluster structure. CD spectra were recorded as Ag+ was added to the alpha and beta fragments formed from rabbit liver MT 1. The silver-containing fragments are less stable than the Ag-MT. The alpha and beta fragments exhibit CD spectral patterns indicative of stoichiometrically defined species. The presence of Ag3- alpha MT 1 and Ag6- alpha MT 1 is suggested by the spectral data obtained at 20 and 55 degrees C. Formation of Ag3- beta MT 1 is suggested by the spectral data recorded at 20 degrees C for the beta fragment. We also report that silver-containing metallothioneins are luminescent. Both the position of the band maximum in the 460-600 nm region and the emission intensity are strongly dependent on the stoichiometry of silver to protein. In the range of molar ratios for silver:MT of 1-12, bands at 465 and 520 nm intensify to a maximum for Ag10-MT 2. A band at 575 nm reaches a maximum for Ag16-MT 2. Analysis of the emission data suggests that Ag+ binds in a domain specific mechanism to apoMT 2.  相似文献   

9.
A Casadevall  L A Day 《Biochemistry》1983,22(20):4831-4842
Ag+ binding and Hg2+ binding to both double-stranded DNA (dsDNA) and single-stranded DNA (ssDNA) have been examined in some detail, and the results have been applied to study the structures of circular ssDNA in several filamentous viruses. It has been known for some time that Ag+ and Hg2+ bind to the bases of DNA producing characteristic large changes in absorbance and circular dichroism (CD) spectra, as well as changes in sedimentation rates. In the case of Ag+, it is known that there are three modes of binding to isolated dsDNA, referred to as types I, II, and III. Type III binding, by definition, occurs when Ag+ binds to Ag-dsDNA complexes having sites for binding types I and II extensively occupied, if not saturated. It produces CD spectra, assigned in this study, and absorbance spectra that are isosbestic with those of the Ag-dsDNA complexes present prior to its onset. In phosphate buffers binding is restricted to types I and II, whereas in borate buffers weaker type III binding can occur. Characteristics of types I, II, and III were observed for the DNAs in fd, If1, IKe, and Xf, but not for those in Pf1 and Pf3. Similarly, many of the spectral changes seen when Hg2+ binds to isolated double-stranded DNA are mimicked by Hg2+ binding to the DNAs within fd, IKe, If1, and Xf, but not for those in Pf1 and Pf3. The Ag+ and Hg2+ results indicate the presence of right-handed DNA helices in fd, If1, IKe, and Xf, with the two antiparallel strands of the covalently closed single-stranded DNAs having the bases directed toward the virion axes. For Pf1 and Pf3, Ag+ and Hg2+ binding cause large absorbance changes but only small CD changes. The very different results for Pf1 and Pf3 are consistent with the presence of inverted DNA structures (I-DNA) with the bases directed away from the structure axes, but the two structures differ from one another. Sedimentation velocity changes with Ag+ and Hg2+ binding strongly suggest structural linkages between the DNA and the surrounding protein sheath in each of the viruses.  相似文献   

10.
Cyclic ADP-ribose (cADPR) is a metabolite of NAD+ which is as active as inositol trisphosphate (IP3) in mobilizing intracellular Ca2+ in sea urchin eggs. The enzyme responsible for synthesizing cADPR is found not only in sea urchin eggs but also in various mammalian tissue extracts, suggesting that it may be a general messenger for Ca2+ mobilization in cells. In this study I address questions of whether an intracellular receptor for cADPR exists and, if so, whether it is different from the IP3 receptor. A procedure employing nitrogen decompression was used to homogenize sea urchin eggs, and the Ca2(+)-storing microsomes were separated from mitochondria and other organelles by Percoll density centrifugation. Radioactive cADPR with high specific activity was produced by incubating [32P]NAD+ with the synthesizing enzyme and the product purified by high pressure liquid chromatography. The enzyme was membrane bound and was isolated from dog brain extracts by sucrose density gradient centrifugation. Partial purification of the enzyme was achieved by DEAE ion-exchange chromatography after solubilization with 3-[(cholamidopropyl)dimethylammonio]-1-propanesulfonate. Specific binding of 32P-labeled cADPR to a saturable site on the Ca2(+)-storing microsomes was detected by a filtration assay. Scatchard analysis indicated a binding affinity of about 17 nM and a capacity of about 25 fmol/mg protein. The binding was not affected by either NAD+ (the precursor) or ADP-ribose (the hydrolysis product) at 0.5 microM but was eliminated by 0.3 microM nonlabeled cADPR. The receptor for cADPR appeared to be different from that of IP3 since IP3 was not an effective competitor at a concentration as high as 3 microM. Similarly, heparin at a concentration that inhibits most of the IP3-induced calcium release from the microsomes did not affect the binding. The binding showed a prominent pH optimum at about 6.7. Calcium at 40 microM decreased the binding by about 50%. These dependencies of the binding on pH and Ca2+ are different from those reported for the IP3 receptor and provide further support that the intracellular receptors for cADPR and IP3 are different.  相似文献   

11.
Engagement of the Ag receptor on naive CD8+ T cells by specific peptide-MHC complex triggers their activation/expansion/differentiation into effector CTL. The frequency of Ag-specific CD8+ T cells can normally be determined by the binding of specific peptide-MHC tetramer complexes to TCR. In this study we demonstrate that, shortly after Ag activation, CD8+ T cells transiently lose the capacity to efficiently bind peptide-MHC tetramer complexes. This transient loss of tetramer binding, which occurs in response to naturally processed viral peptide during infection in vitro and in vivo, is associated with reduced signaling through the TCR and altered/diminished effector activity. This change in tetramer binding/effector response is likewise associated with a change in cell surface TCR organization. These and related results suggest that early during CD8+ T cell activation, there is a temporary alteration in both cell surface Ag receptor display and functional activity that is associated with a transient loss of cognate tetramer binding.  相似文献   

12.
The interactions of Tb3+ and sarcoplasmic reticulum (SR) were investigated by inhibition of Ca2+-activated ATPase activity and enhancement of Tb3+ fluorescence. Ca2+ protected against Tb3+ inhibition of SR ATPase activity. The apparent association constant for Ca2+, determined from the protection, was about 6 x 10(6) M-1, suggesting that Tb3+ inhibits the ATPase activity by binding to the high affinity Ca2+ binding sites. Mg2+ did not protect in the 2-20 mM range. The association constant for Tb3+ binding to this Ca2+ site was estimated to be about 1 x 10(9) M-1. No cooperativity was observed for Tb3+ binding. No enhancement of Tb3+ fluorescence was detected. A second group of binding sites, with weaker affinity for Tb3+, was observed by monitoring the enhancement of Tb3+ fluorescence (lambda ex 285 nm, lambda em 545 nm). The fluorescence intensity increased 950-fold due to binding. Ca2+ did not complete for binding at these sites, but Mg2+ did. The association constant for Mg2+ binding was 94 M-1, suggesting that this may be the site that catalyzes phosphorylation of the ATPase by inorganic phosphate. For vesicles, Tb3+ binding to these Mg2+ sites was best described as binding to two classes of binding sites with negative cooperativity. If the SR ATPase was solubilized in the nonionic detergent C12E9 (dodecyl nonaoxyethylene ether alcohol), in the absence of Ca2+, only one class of Tb3+ binding sites was observed. The total number of sites appeared to remain constant. If Ca2+ was included in the solubilization step, Tb3+ binding to these Mg2+ binding sites displayed positive cooperativity (Hill coefficient, 2.1). In all cases, the apparent association constant for Tb3+, in the presence of 5 mM MgCl2, was in the range of 1-5 x 10(4) M-1.  相似文献   

13.
In this work, the binding characteristics of methylene blue (MB) to human serum albumin (HSA) and the influence of Cu2+ and Fe3+ on the binding affinity of MB to HSA were investigated using fluorescence, absorption, circular dichroism (CD) spectroscopy and molecular modelling. The results of competitive binding experiments using the site probes ketoprofen and ibuprofen as specific markers suggested that MB was located in site I within sub‐domain IIA of HSA. The molecular modelling results agreed with the results of competitive site marker experiments and the results of CD spectra indicated that the interaction between MB and HSA caused the conformational changes in HSA. The binding affinity of MB to HSA was enhanced but to a different extent in the presence of Cu2+ and Fe3+, respectively, which indicated that the influence of different metal ions varied. Enhancement of the binding affinity of MB to HSA in the presence of Cu2+ is due to the formation of Cu2+–HSA complex leading to the conformational changes in HSA, whereas in the presence of Fe3+, enhancement of the binding affinity is due to the greater stability of the Fe3+–HSA–MB complex compared with the MB–HSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Spectroscopically active terbium ions have been used to probe the Ca2+ ion-binding sites on human plasma gelsolin. The luminescence of Tb3+ ions bound to gelsolin is markedly enhanced when excited indirectly at 295 nm due to F?rster type dipole-dipole energy transfer from neighboring tryptophan residues. Titration of this luminescence with increasing concentrations of Tb3+ ions was saturable although the shape of this titration curve was complex indicating the involvement of multiple classes of sites. Luminescence lifetime measurements (obtained by indirect excitation at 295 nm) demonstrate the presence of two classes of sites characterized by a major lifetime of 1.0-1.1 ms and a minor lifetime of 0.7-0.8 ms. However, while the amplitude of the minor lifetime showed a hyperbolic dependence on the Tb3+ ion concentration, the amplitude of the major lifetime showed a strongly sigmoidal dependence. Different classes of Tb3+ ion binding sites can also be distinguished by the different Ca2+ ion concentrations needed to displace Tb3+ ions from these sites on gelsolin. It is proposed that the occupancy of one class of Tb3+ ion binding sites on gelsolin causes a conformational change in gelsolin which then allows a second class of cryptic Tb3+ ion binding sites to be expressed. The implications of these results in terms of the binding of Ca2+ ions to gelsolin and the regulation of the activities of gelsolin by calcium are discussed.  相似文献   

15.
Calmodulin, spin labeled at Tyr-99, has been titrated with the lanthanides La3+, Nd3+, Eu3+, Tb3+, Er3+ and Lu3+ as well as Ca2+ and Cd2+. The titration was monitored by EPR and changes in mobility of the spin label, due to binding into the labeled site and protein conformational change, were observed. Comparison of these titration curves with theoretical binding curves for the various calmodulin-metal species, show that different lanthanides have different high affinity sites. Three basic categories were observed, with Lu3+ and Er3+ behaving like Ca2+, Eu3+ and Tb3+ binding in the opposite order from Ca2+, and La3+ and Nd3+ different from either Ca2+ or Tb3+.  相似文献   

16.
The members of the antigen 85 protein family (Ag85), consisting of members Ag85A, Ag85B, and Ag85C, are the predominantly secreted proteins of mycobacteria and possess the ability to specifically interact with fibronectin (Fn). Because Fn-binding proteins are likely to be important virulence factors of Mycobacterium spp., Ag85 may contribute to the adherence, invasion, and dissemination of organisms in host tissue. In this study, we reported the Fn binding affinity of Ag85A, Ag85B, and Ag85C from Mycobacterium avium subsp. paratuberculosis (MAP) (K(D) values were determined from 33.6 to 68.4 nm) and mapped the Ag85-binding motifs of Fn. Fn14, a type III module located on the heparin-binding domain II (Hep-2) of Fn, was discovered to interact with Ag85 from MAP. The peptide inhibition assay subsequently demonstrated that a peptide consisting of residues 17-26 from Fn14 ((17)SLLVSWQPPR(26), termed P17-26) could interfere with Ag85B binding to Fn (73.3% reduction). In addition, single alanine substitutions along the sequence of P17-26 revealed that the key residues involved in Ag85-Fn binding likely contribute through hydrophobic and charge interactions. Moreover, binding of Ag85 on Fn siRNA-transfected Caco2 cells was dramatically reduced (44.6%), implying the physiological significance of the Ag85-Fn interaction between mycobacteria and host cells during infection. Our results indicate that Ag85 binds to Fn at a novel motif and plays a critical role in mycobacteria adherence to host cells by initiating infection. Ag85 might serve as an important colonization factor potentially contributing to mycobacterial virulence.  相似文献   

17.
P1B-type ATPases transport heavy metal ions across cellular membranes. Archaeoglobus fulgidus CopB is a member of this subfamily. We have cloned, expressed in Escherichia coli, and functionally characterized this enzyme. CopB and its homologs are distinguished by a metal binding sequence Cys-Pro-His in their sixth transmembrane segment (H6) and a His-rich N-terminal metal binding domain (His-N-MBD). CopB is a thermophilic protein active at 75 degrees C and high ionic strength. It is activated by Cu2+ with high apparent affinity (K1/2 = 0.28 microm) and partially by Cu+ and Ag+ (22 and 55%, respectively). The higher turnover was associated with a faster phosphorylation rate in the presence of Cu2+. A truncated CopB lacking the first 54 amino acids was constructed to characterize the His-N-MBD. This enzyme showed reduced ATPase activity (50% of wild type) but no changes in metal selectivity, ATP dependence, or phosphorylation levels. However, a slower rate of dephosphorylation of the E2P(Cu2+) form was observed for truncated CopB. The data suggest that the presence of the His residue in the putative transmembrane metal binding site of CopB determines a selectivity for this enzyme that is different for that observed in Cu+/Ag+-ATPases carrying a Cys-Pro-Cys sequence. The His-NMBD appears to have a regulatory role affecting the metal transport rate by controlling the metal release/dephosphorylation rates.  相似文献   

18.
Permeation characteristics of gramicidin conformers.   总被引:3,自引:3,他引:0       下载免费PDF全文
To investigate the molecular origin of decreased conductance in variant gramicidin channels, we examined the current-voltage (IV) characteristics of single Val1-gramicidin A channels. Unlike standard channels, all variant channels showed pronounced rectification even though bathing solutions were symmetrical. Moreover, channels of lower conductance consistently showed more pronounced rectification. Analysis within the framework of a three-barrier, two-site, single-filing model indicates that the shape of the variant channel IVs could be best explained by an increase in binding affinity near one of the two channel entrances. This conclusion was further tested by characterizing single channel IVs in bi-ionic solutions having different cationic species at each channel entrance. In Cs/Na bi-ionic solutions, reversal potentials of variant channels often differed by a small but significant amount from those of standard channels. When a membrane potential was applied, the ionic currents tended to be reduced more when flowing from the Na+ side than the Cs+ side. These observations support the conclusion that variant channels have increased binding affinity at one end of the channel. Furthermore, H+ currents were increased while Ag+ currents were unaltered for most variant channels exhibiting decreased Na+ or Cs+ currents. The increased H+ conductance argues against long-range coulombic forces as the basis for decreased Na+ or Cs+ conductance while the normal Ag+ conductance suggests that the binding site field strength increases by a change in carbonyl geometry at the channel entrance.  相似文献   

19.
Independence of the domains of metallothionein in metal binding   总被引:2,自引:0,他引:2  
Mammalian metallothionein is a low molecular weight protein with two metal-binding domains. To determine if metal binding in one domain affects binding in the other, we prepared peptides corresponding to the regions that enfold the two metal-thiolate clusters. Metal reconstitution studies of these peptides revealed stoichiometries of metal binding similar to those observed within the intact molecule. Thus, the alpha domain coordinates 4 Cd(II), 6 Cu(I), or 6 Ag(I) ions regardless of whether the domain is part of the total protein or is studied as a separate peptide. Likewise, the beta domain binds 3 Cd(II), 6 Cu(I), or 6 Ag(I) ions in both the intact protein and as a separate peptide. If cluster B in intact metallothionein is preformed with Cu(I) or Ag(I), cluster A saturates with either 4 mol eq of Cd(II) or 6 mol eq of Ag(I). Similarly, preformation of the A cluster with Cd(II) does not affect the binding of 6 Cu(I) ions in the B cluster. Therefore, the metal-dependent folding of the protein to create one cluster occurs independent of constraints or influences from the other domain. Formation of the protein with a tetrahedrally coordinated metal in one cluster and a trigonally coordinated metal in the other center is possible.  相似文献   

20.
Differential UV spectra of DNA and its monomers that were induced by Ag+ ions were measured, and the effect of ions on the parameters of the helix-coil transition was studied. The data obtained confirm the existence of "strong" and "weak" modes of binding of Ag+ to DNA. The earlier proposed proton transfer from N1G to N3C, which is determined by the interaction of Ag+ with N7G (a "strong" complex), follows immediately from the shape of the differential UV spectra. The positive cooperativity of the binding of Ag+ to DNA upon the formation of a "weak" complex is due to the cooperativity of the transition of DNA to a new double-helical conformation. A model of this conformation is proposed which suggests the formation of Hougsteen GC and AT pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号