首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A disulfide-interchange enzyme from rat liver microsomes was found to promote binding in vitro of human free secretory component (SC) to dimeric serum-type IgA containing J chain, as assessed by immune precipitation and gel filtration. This effect was greater withe native than with partially reduced SC. Most of the bound SC was covalently linked, as determined by electrophoresis in polyacrylamide gels in detergent. The enzyme did not promote binding of native or partially reduce SC to IgG, IgA monomer, IgA dimer without J chain, or IgM. In the case of IgM, the enzyme did, however, promote covalent bonding of previously non-covalently linked SC. The results overall suggest that a disulfide-interchange enzyme could play a role in vivo in the cell-associated assembly of secretory IgA by promoting the covalent attachment of SC to a dimer of serum-type IgA and that the J chain in the IgA dimer contributes to the enzyme effect.  相似文献   

2.
The epidermal growth factor (EGF) receptor is a tyrosine kinase that dimerizes in response to ligand binding. Ligand-induced dimerization of the extracellular domain of the receptor promotes formation of an asymmetric dimer of the intracellular kinase domains, leading to stimulation of the tyrosine kinase activity of the receptor. We recently monitored ligand-promoted conformational changes within the EGF receptor in real time using luciferase fragment complementation imaging and showed that there was significant movement of the C-terminal tail of the EGF receptor following EGF binding (Yang, K. S., Ilagan, M. X. G., Piwnica-Worms, D., and Pike, L. J. (2009) J. Biol. Chem. 284, 7474–7482). To investigate the structural basis for this conformational change, we analyzed the effect of several mutations on the kinase activity and luciferase fragment complementation activity of the EGF receptor. Mutation of Asp-960 and Glu-961, two residues at the beginning of the C-terminal tail, to alanine resulted in a marked enhancement of EGF-stimulated kinase activity as well as enhanced downstream signaling. The side chain of Asp-960 interacts with that of Ser-787. Mutation of Ser-787 to Phe, which precludes this interaction, also leads to enhanced receptor kinase activity. Our data are consistent with the hypothesis that Asp-960/Glu-961 represents a hinge or fulcrum for the movement of the C-terminal tail of the EGF receptor. Mutation of these residues destabilizes this hinge, facilitating the formation of the activating asymmetric dimer and leading to enhanced receptor signaling.  相似文献   

3.
A general structure for the atrial natriuretic peptide clearance receptor (ANP C-receptor) has been proposed based on hydropathicity analysis of the deduced amino acid sequence of this membrane protein (Fuller, F., Porter, J.G., Arfsten, A., Miller, J., Schilling, J., Scarborough, R.M., Lewicki, J.A., and Schenk, D.B. (1988) J. Biol. Chem. 263, 9395-9401). The ANP C-receptor is believed to possess a large amino-terminal extracellular domain (436 amino acids), a single hydrophobic transmembrane anchor (23 amino acids), and a short cytoplasmic tail (37 amino acids). As a means of testing the structure and proposed cellular orientation of this protein, we have employed the technique of in vitro mutagenesis to prepare a receptor mutant (anc-) lacking the transmembrane and cytoplasmic domains. Expression of this mutant in mammalian cells using a vaccinia virus vector results in secretion of a truncated soluble form of the ANP C-receptor which binds native ANP and synthetic ANP analogs with a specificity similar to that of the native ANP C-receptor. In contrast to the native ANP C-receptor that exists predominantly as a homodimer on the cell surface, the secreted receptor exists as a monomeric species. The results are consistent with the proposed structure of this receptor with the amino-terminal domain containing the ANP-binding site oriented extracellular to the plasma membrane. In addition, these data demonstrate that the receptor does not require association with the plasma membrane or its native dimeric configuration in order to bind ANP ligands with high affinity and specificity.  相似文献   

4.
A variant of human interferon-gamma (IFN-gamma) has been created in which the two chains of the homodimeric cytokine were linked N- to C-terminus by an eight residue polypeptide linker. The sequence of this linker was derived from a loop in bira bifunctional protein, and was determined from a structural database search. This "single-chain" variant was used to create an IFN-gamma molecule that binds only a single copy of the alpha-chain receptor, rather than the 2 alpha-chain receptor: 1 IFN-gamma binding stoichiometry observed for the native hormone. Crystals have been grown of a 1:1 complex between this single-chain molecule and the extracellular domain of its alpha-chain receptor. These crystals diffract beyond 2.0 A, significantly better than the 2.9 A observed for the native 2:1 complex. Density calculations suggest these crystals contain two complexes in the asymmetric unit; a self-rotation function confirms this conclusion.  相似文献   

5.
Interferon-gamma (IFN-gamma) and its receptor complex are dimeric and bilaterally symmetric. We created mutants of IFN-gamma that bind only one IFN-gammaR1 chain per dimer molecule (called a monovalent IFN-gamma) to see if the interaction of IFN-gamma with one-half of the receptor complex is sufficient for bioactivity. Mutating a receptor-binding sequence in either AB loop of a covalent dimer of IFN-gamma yielded two monovalent IFN-gammas, gamma(m)-gamma and gamma-gamma(m), which cross-link to only a single soluble IFN-gammaR1 molecule in solution and on the cell surface. Monovalent IFN-gamma competes fully with wild type IFN-gamma for binding to U937 cells but only at a greater than 100-fold higher concentration than wild type IFN-gamma. Monovalent IFN-gamma had anti-vesicular stomatitis virus activity and antiproliferative activity, and it induced major histocompatibility complex class I and class II (HLA-DR) expression. In contrast, the maximal levels of activated Stat1alpha produced by monovalent IFN-gammas after 15 min were never more than half of those produced by either wild type or covalent IFN-gammas in human cell lines. These data indicate that while monovalent IFN-gamma activates only one-half of a four-chain receptor complex, this is sufficient for Stat1alpha activation, major histocompatibility complex class I surface antigen induction, and antiviral and antiproliferative activities. Thus, while interaction with both halves of the receptor complex is required for high affinity binding of IFN-gamma and efficient signal transduction, interaction with only one-half of the receptor complex is sufficient to initiate signal transduction.  相似文献   

6.
Major histocompatibility complex (MHC) class II molecules are membrane-anchored heterodimers on the surface of antigen-presenting cells that bind the T cell receptor, initiating a cascade of interactions that results in antigen-specific activation of clonal populations of T cells. Susceptibility to multiple sclerosis is associated with certain MHC class II haplotypes, including human leukocyte antigen (HLA) DR2. Two DRB chains, DRB5*0101 and DRB1*1501, are co-expressed in the HLA-DR2 haplotype, resulting in the formation of two functional cell surface heterodimers, HLA-DR2a (DRA*0101, DRB5*0101) and HLA-DR2b (DRA*0101, DRB1*1501). Both isotypes can present an immunodominant peptide of myelin basic protein (MBP-(84-102)) to MBP-specific T cells from multiple sclerosis patients. We have previously demonstrated that the peptide binding/T cell recognition domains of rat MHC class II (alpha1 and beta1 domains) could be expressed as a single exon for structural and functional characterization; Burrows, G. G., Chang, J. W., B?chinger, H.-P., Bourdette, D. N., Wegmann, K. W., Offner, H., and Vandenbark A. A. (1999) Protein Eng. 12, 771-778; Burrows, G. G., Adlard, K. L., Bebo, B. F., Jr., Chang, J. W., Tenditnyy, K., Vandenbark, A. A., and Offner, H. (2000) J. Immunol. 164, 6366-6371). Single-chain human recombinant T cell receptor ligands (RTLs) of approximately 200 amino acid residues derived from HLA-DR2b were designed using the same principles and have been produced in Escherichia coli with and without amino-terminal extensions containing antigenic peptides. Structural characterization using circular dichroism predicted that these molecules retained the antiparallel beta-sheet platform and antiparallel alpha-helices observed in the native HLA-DR2 heterodimer. The proteins exhibited a cooperative two-state thermal unfolding transition, and DR2-derived RTLs with a covalently linked MBP peptide (MBP-(85-99)) showed increased stability to thermal unfolding relative to the empty DR2-derived RTLs. These novel molecules represent a new class of small soluble ligands for modulating the behavior of T cells and provide a platform technology for developing potent and selective human diagnostic and therapeutic agents for treatment of autoimmune disease.  相似文献   

7.
CuZn superoxide dismutase is a highly stable dimer of identical subunits with a combined molecular mass of 32,000 daltons. Two human superoxide dismutase genes have been joined in the same translational reading frame, using spacers of different lengths, to encode single chain proteins consisting of two identical human superoxide dismutase subunits. The first construct encodes two directly linked subunits; the terminal glutamine codon of the first gene was changed to a methionine codon and followed immediately by the second gene. The second construct encodes two subunits linked by a 19-amino-acid human immunoglobulin IgA1 hinge sequence. Both constructs produce high levels of catalytically active superoxide dismutase when expressed in Escherichia coli. The protein containing the IgA1 hinge sequence forms polymers up to 750,000 in molecular weight, which are linked together noncovalently by the hydrophobic bonding of the dimer interface. The polymers are soluble, thermostable, and of near normal specific activity. Site-directed in vitro mutagenesis was used to inactivate one of the two human superoxide dismutase subunits. The resulting human superoxide dismutase polymers have approximately 50% activity, thus confirming that the products of both genes are catalytically active. Large amounts of individual polymeric forms have been purified from recombinant yeast and tested for serum stability in rats. The serum half-life is approximately 7 min for both the two-chain wild type human superoxide dismutase dimer (Mr 32,000) and the single chain molecule consisting of a human superoxide dismutase dimer covalently linked by the immunoglobulin hinge region (Mr 34,000), whereas the higher molecular weight polymers (Mr greater than or equal to 68,000) all have half-lives of approximately 145 min.  相似文献   

8.
We have shown previously (Rondeau, J.-J., McNicoll, N., Gagnon, J., Bouchard, N., Ong, H., and De Léan, A. (1995) Biochemistry 34, 2130-2136) that atrial natriuretic peptide (ANP) stabilizes a dimeric form of the natriuretic peptide receptor A (NPRA) by simultaneously interacting with both receptor subunits. However, the first crystallographic study of unliganded NPRA extracellular domain documented a V-shaped dimer involving a membrane-proximal dimer interface and separate binding sites for ANP on each monomer. We explored the possibility of an alternative A-shaped dimer involving a membrane-distal dimer interface by substituting an unpaired solvent-exposed cysteine for Trp(74) in the amino-terminal lobe of full-length NPRA. The predicted spacing between Trp(74) from both subunits drastically differs, depending on whether the V-shaped (84 A) or the A-shaped (8 A) dimer model is considered. In contrast with the expected results for the reported V-shaped dimer, the NPRA(W74C) mutant was constitutively covalently dimeric. Also, the subunits spontaneously reassociated following transient disulfide reduction by dithiothreitol and reoxidation. However, ANP could neither bind to nor activate NPRA(W74C). Permanent disulfide opening by reduction with dithiothreitol and alkylation with N-ethylmaleimide rescued ANP binding to NPRA(W74C). The NPRA mutant could be maintained as a covalent dimer while preserving its function by crosslinking with the bifunctional alkylating agent phenylenedimaleimides (PDM), the ortho-substituted oPDM being more efficient than mPDM or pPDM. These results indicate that the membrane-distal lobe of the NPRAM extracellular domains are dynamically interfacing in the unliganded state and that ANP binding stabilizes the receptor dimer with more stringent spacing at the dimer interface.  相似文献   

9.
K H Mok  K H Han 《Biochemistry》1999,38(37):11895-11904
The three-dimensional solution conformation of an 11-residue antitoxic analogue of alpha-conotoxin GI, des-Glu1-[Cys3Ala]-des-Cys13-conotoxin GI (CANPACGRHYS-NH(2), designated "GI-15" henceforth), has been determined using two-dimensional (1)H NMR spectroscopy. The disulfide loop region (1C-6C) and the C-terminal tail (8R-11S) are connected by a flexible hinge formed near 7G, and the pairwise backbone rmsds for the former and the latter are 0.58 and 0.65 A, respectively. Superpositioning GI-15 with the structure of alpha-conotoxin GI shows that the two share an essentially identical fold in the common first disulfide loop region (1C-6C). However, the absence of the second disulfide loop in GI-15 results in segmental motion of the C-terminal half, causing the key receptor subtype selectivity residue 8R (Arg9 in alpha-conotoxin GI) to lose its native spatial orientation. The combined features of structural equivalence in the disulfide loop and a mobile C-terminal tail appear to be responsible for the activity of GI-15 as a competitive antagonist against native toxin. Electrostatic surface potential comparisons of the first disulfide region of GI-15 with other alpha-conotoxins or receptor-bound states of acetylcholine and d-tubocurarine show a common protruding surface that may serve as the minimal binding determinant for the neuromuscular acetylcholine receptor alpha 1-subunit. On the basis of the original "Conus toxin macrosite model" [Olivera, B. M., Rivier, J., Scott, J. K., Hillyard, D. R., and Cruz, L. J. (1991) J. Biol. Chem. 266, 1923-1936], we propose a revised binding model which incorporates these results.  相似文献   

10.
Human IgG2 antibodies display disulfide-mediated structural isoforms   总被引:1,自引:0,他引:1  
In this work, we present studies of the covalent structure of human IgG2 molecules. Detailed analysis showed that recombinant human IgG2 monoclonal antibody could be partially resolved into structurally distinct forms caused by multiple disulfide bond structures. In addition to the presently accepted structure for the human IgG2 subclass, we also found major structures that differ from those documented in the current literature. These novel structural isoforms are defined by the light chain constant domain (C(L)) and the heavy chain C(H)1 domain covalently linked via disulfide bonds to the hinge region of the molecule. Our results demonstrate the presence of three main types of structures within the human IgG2 subclass, and we have named these structures IgG2-A, -B, and -A/B. IgG2-A is the known classic structure for the IgG2 subclass defined by structurally independent Fab domains and hinge region. IgG2-B is a structure defined by a symmetrical arrangement of a (C(H)1-C(L)-hinge)(2) complex with both Fab regions covalently linked to the hinge. IgG2-A/B represents an intermediate form, defined by an asymmetrical arrangement involving one Fab arm covalently linked to the hinge through disulfide bonds. The newly discovered structural isoforms are present in native human IgG2 antibodies isolated from myeloma plasma and from normal serum. Furthermore, the isoforms are present in native human IgG2 with either kappa or lambda light chains, although the ratios differ between the light chain classes. These findings indicate that disulfide structural heterogeneity is a naturally occurring feature of antibodies belonging to the human IgG2 subclass.  相似文献   

11.
Myosin has been modified with near stoichiometric amounts of the bifunctional reagent [14C]p-N,N'-phenylenedimaleimide (pPDM) in the presence of MgADP under conditions which abolish its ATPase activity. Subsequent carboxymethylation and CNBr cleavage results in the 14C label being associated with a single polypeptide of Mr approximately 10,000. Amino acid composition and partial sequence analysis of this peptide showed that it corresponded to the peptide containing -SH1 and -SH2 sequenced by Elzinga and Collins (Elzinga, M., and Collins, J.H. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 4281-4284) and to the peptide labeled at -SH1 or -SH2 by N-ethylmaleimide by Kunz et al. (Kunz, P.A., Walser, J.T., Watterson, J.G., and Schaub, M.C. (1977) FEBS Lett. 83, 137-140). These data indicating that pPDM does label the -SH1- and -SH2-containing region in myosin by covalently bridging them and shows that in the presence of MgADP these thiols can approach to within 12 to 14 A.  相似文献   

12.
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.  相似文献   

13.
14.
15.
R A Kohanski  E Schenker 《Biochemistry》1991,30(9):2406-2414
Autophosphorylation of purified insulin receptor, in the absence of insulin, was stimulated by selected polypeptide substrates. In the presence of 1 microM insulin these peptides inhibited autophosphorylation. Stimulation was observed with reduced [S-(carboxamidomethyl)cysteinyl]lysozyme (RCAM-lysozyme) and three peptides generated by CNBr cleavage, V8 proteinase digestion and/or chemical modification. We also generated two peptide substrates from RCAM-lysozyme which did not stimulate receptor autophosphorylation and were very weak inhibitors. As a control peptide, the simple substrate angiotensin inhibited receptor autophosphorylation in the absence or presence of insulin. However, stimulatory peptide, but not insulin, significantly shifted the concentration dependence for inhibition by angiotensin. The stimulatory peptides also increased autophosphorylation of the cloned cytoplasmic domain of the kinase [R-BIRK; Villalba, M., Wente, S. R., Russell, D. S., Ahn, J., Reichelderfer, C. F., & Rosen, O. M. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 7848]. Therefore, stimulation occurs by interaction with the cytoplasmic process of the beta-subunit and not through interaction with the insulin binding alpha-subunit of the native receptor. Autophosphorylation was analyzed by mapping 32P-labeled tryptic phosphopeptides from the beta-subunit and from R-BIRK. Nearly identical phosphopeptide maps were found, comparing first, basal R-BIRK and basal native receptor, second, peptide- and insulin-stimulated native receptor, and third, peptide-stimulated R-BIRK and insulin-stimulated native receptor. Therefore, R-BIRK functions as a basal-state enzyme and can be stimulated in an insulin-like manner. On the basis of these observations, stimulation by insulin and by peptides yields similar functional results, but by apparently different mechanisms.  相似文献   

16.
Rat blood plasma contains three high molecular weight thiol ester-containing proteinase inhibitors, alpha 1-macroglobulin (alpha 1M), alpha 1-inhibitor III (alpha 1I3), and alpha 2-macroglobulin (alpha 2M). Rat serums have been analyzed using a two-dimensional gel electrophoretic technique which optimizes recovery of high molecular weight proteins. alpha 1M, and (alpha beta)4-tetramer in native solution, separated in the second sodium dodecyl sulfate-containing electrophoretic dimension as a disulfide-linked (alpha beta)2-dimer with an approximate Mr of 360 kDa. alpha 1I3 separated in the gels as a single 190-kDa polypeptide. It is also a monomer in native solution by ultracentrifugation criteria. Native rat alpha 2M is a tetramer, but it separates in the gels as a disulfide-linked dimer with an Mr of approximately 360 kDa. The kinetics of changes in concentration of these proteins during the induction of polyarthritis was also measured by quantitative immunoelectrophoresis. In rats with adjuvant-induced polyarthritis, the concentration of alpha 1I3 dramatically decreases and alpha 2M appears and continues to increase in a biphasic manner for 2 weeks. The alpha 1M concentration remains relatively constant. All three macroglobulins were purified utilizing modern rapid chromatographic techniques, and parallel comparisons of their native physicochemical properties were carried out. The N-terminal sequence of the alpha-chain of rat alpha 1M was also shown to share sequence homology with that of alpha 2M. In agreement, Esnard et al. (Esnard, F., Gutman, N., El Moujahed, A., and Gauthier, F. (1985) FEBS Lett. 182, 125-129) recently reported that alpha 1I3 also contains a thiol ester bond, as do alpha 1M and alpha 2M, since it reacts covalently with [14C]methylamine and is cleaved autolytically at 80 degrees C. We have examined negatively stained preparations of native, trypsin-treated, and methylamine-treated human alpha 2M, rat alpha 2M, and rat alpha 1M in the electron microscope. Trypsin appears to convert globular ring-shaped native molecules to rectangular box-like structures, in agreement with the conclusions of a recent report on human alpha 2M (Tapon-Bretaudiere, J., Bros, A., Couture-Tosi, E., and Delain, E. (1985) EMBO J. 4, 85-89).  相似文献   

17.
18.
A novel photoactivatable linear peptide antagonist selective for the V(1a) vasopressin receptor, [(125)I][Lys(3N(3) Phpa)(8)]HO-LVA, was synthesized, characterized, and used to photolabel the human receptor expressed in Chinese hamster ovary cells. Two specific glycosylated protein species at 85-90 and 46 kDa were covalently labeled, a result identical to that obtained with a previous photosensitive ligand, [(125)I]3N(3)Phpa-LVA (Phalipou, S., Cotte, N. , Carnazzi, E., Seyer, R., Mahe, E., Jard, S., Barberis, C., and Mouillac, B. (1997) J. Biol. Chem. 272, 26536-26544). To identify contact sites between the new photoreactive analogue and the V(1a) receptor, the labeled receptors were digested with Lys-C or Asp-N endoproteinases and chemically cleaved with CNBr. Fragmentation with CNBr, Lyc-C, and Asp-N used alone or in combination, led to the identification of a restricted receptor region spanning the first extracellular loop. The results established that sequence Asp(112)-Pro(120) could be considered as the smallest covalently labeled fragment with [(125)I][Lys(3N(3)Phpa)(8)]HO-LVA. Based on the present experimental result and on previous photoaffinity labeling data obtained with [(125)I]3N(3)Phpa-LVA (covalent attachment to transmembrane domain VII), three-dimensional models of the antagonist-bound receptors were constructed and then verified by site-directed mutagenesis studies. Strikingly, these two linear peptide antagonists, when bound to the V(1a) receptor, could adopt a pseudocyclic conformation similar to that of the cyclic agonists. Despite divergent functional properties, these peptide antagonists could interact with a transmembrane-binding site significantly overlapping that of the natural hormone vasopressin.  相似文献   

19.
Guanylin (PNTCEICAYAACTGC) is a peptide recently isolated from the intestine, the actions of which appear to be mimicked by bacterial heat-stable enterotoxins (Currie, M. G., Fok, K. F., Kato, J., Moore, R. J., Hamra, F. K., Duffin, K. L., and Smith, C. E. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 947-951). A cDNA clone encoding the peptide was isolated from a rat intestinal cDNA library using a degenerate oligonucleotide probe. The mRNA (approximately 0.8-0.9 kilobase) encoding the peptide contained an open reading frame of 115 amino acids, including an amino-terminal signal peptide. The carboxyl-terminal region of the predicted polypeptide contained a sequence identical to guanylin, but the 15-amino acid peptide likely represents an artifact of previous acetic acid extraction methods, since an aspartate residue precedes the amino-terminal proline. A lysine-lysine dipeptide bond is one likely processing site of pro-guanylin and would generate a 60-amino acid mature peptide. Other potential cleavage sites exist at single lysine and arginine residues, which could result in peptides ranging from 22 to 56 amino acids. Transfection of COS-7 cells with the guanylin cDNA resulted in the expression of a secreted protein of M(r) 10,000. The expressed proguanylin failed to elevate cyclic GMP concentrations in human colonic T84 cells, but acetic acid treatment of pro-guanylin activated it and resulted in large elevations of cyclic GMP. Guanylin mRNA was prevalent in rat intestine but was also found in low abundance in adrenal gland, kidney, and uterus/oviduct. Guanylyl cyclase C, the apparent guanylin receptor, was found in abundant amounts in the intestine by Northern analysis, and by the polymerase chain reaction or cDNA cloning it was also found in adrenal gland, airway epithelial cells, brain, and olfactory and tracheal mucosa. Therefore, the ligand and apparent receptor (guanylyl cyclase C) both originate from mammalian genes, and are expressed in various mammalian tissues.  相似文献   

20.
Molecular characterization of the murine interferon gamma receptor cDNA   总被引:5,自引:0,他引:5  
Interferon gamma receptors (IFN-gamma R) exhibit remarkable species specificity. In order to understand the basis for this phenomenon, we have isolated a recombinant cDNA clone corresponding to the mouse (Mu) IFN-gamma R. Microinjection of the mRNA synthesized in vitro corresponding to the cloned cDNA into Xenopus laevis oocytes resulted in the synthesis of a protein that specifically binds Mu-IFN-gamma. Analysis of murine genomic and RNA blots with the cDNA probe indicates the presence of a single gene and a single mRNA species of about 2300 bases. Sequence analysis of the cDNA encoding the Mu-IFN-gamma R and comparison with the corresponding human IFN-gamma R sequence shows about 68% conservation of the extracellular domains and 51% conservation of the cytoplasmic domains at the nucleotide level. The results indicate that, as expected, the sequence of the receptor confers species specificity for the binding of IFN-gamma to the cell surface receptor. Moreover, it was previously shown that a human factor is required in addition to the receptor for the human IFN-gamma to function in hamster or mouse cells (Jung, V., Rashidbaigi, A., Jones, C., Tischfield, J.A., Shows, T.B., and Pestka, S. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4151-4155). These results suggest an explanation for the second species-specific event required for function of the human receptor in mouse or hamster cells in that the intracellular domains are significantly different and thus cannot interact with the corresponding heterologous factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号