首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endotoxin shock can induce the production of several inflammatory mediators such as TNF-α, IL-6, and IL-1β, leading to multiple organ dysfunction and death. Erythropoietin (EPO) has been found to interact with its receptor (EPO-R), expressed in a wide variety of non-hematopoietic tissues, to induce a range of pleiotropic cytoprotective actions. We investigated the effects of low doses of EPO (300 U/kg, intravenous administration) on the physiopathology and cytokine levels in endotoxin shock in conscious rats. Endotoxin shock was induced by intravenous injection of Escherichia coli lipopolysaccharide (20 mg/kg) in conscious rats. Mean arterial pressure (MAP) and heart rate (HR) were continuously monitored for 48 h after LPS administration. Levels of biochemical and cytokine parameters, including glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), blood urea nitrogen (BUN), creatinine (Cre), lactic dehydrogenase (LDH), and creatine phosphokinase (CPK) were measured at 0, 1, 3, 6, 9, 12, 18, 24, and 48 h after sepsis. Serum TNF-α, IL-6, and IL-1β level was measured at 1 h after sepsis. Endotoxin shock significantly increased blood GOT, GPT, BUN, Cre, LDH, CPK, TNF-α, IL-6, IL-1β levels, and HR, while it decreased MAP. EPO further increased the markers of organ injury (GOT, GPT, BUN, Cre, LDH, and CPK), inflammatory biomarkers (TNF-α, IL-6, and IL-1β) and did not affect MAP and HR after LPS. EPO disserved endotoxin shock-induced liver, kidney, lung, and small intestine damage in conscious rats. In conclusion, pre-treatment with low doses of EPO increased the release of TNF-α, IL-6, and IL-1β, along with aggravating endotoxin shock-induced markers of organ injury in conscious rats.  相似文献   

2.
Lipopolysaccharide is strongly associated with septic shock, leading to multiple organ failure. It can activate monocytes and macrophages to release proinflammatory mediators such as tumor necrosis factor- (TNF-), interleukin-1 (IL-1), and nitric oxide (NO). The present experiments were designed to induce endotoxin shock by an intravenous injection ofKlebsiella pneumoniae lipopolysaccharide (LPS, 10 mg/kg) in conscious rats. Arterial pressure and heart rate (HR) were continuously monitored for 48 h after LPS administration. N-Acetyl-cysteine was used to study its effects on organ damage. Biochemical substances were measured to reflect organ functions. Biochemical factors included blood urea nitrogen (BUN), creatinine (Cre), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), aspartate transferase (GOT), alanine transferase (GPT), TNF-, IL-1, methyl guanidine (MG), and nitrites/nitrates. LPS caused significant increases in blood BUN, Cre, LDH, CPK, GOT, GPT, TNF-, IL-1, MG levels, and HR, as well as a decrease in mean arterial pressure and an elevation of nitrites/nitrates. N-Acetylcysteine suppressed the release of TNF-, IL-1, and MG, but enhanced NO production. These actions ameliorate LPS-induced organ damage in conscious rats. The beneficial effects may suggest a potential chemopreventive effect of this compound in sepsis prevention and treatment.  相似文献   

3.
The effect of one intraperitoneal injection of 1.33 ml of CCl4 per kg of fish was studied. Two experimental series were performed and studied for 10 days (with diluent) and 24 h (pure CCl4) periods. LDH, GOT, GPT, GR, GDH, CPK, G-6-Pase, and AlkPase were studied. The activity of all enzymes in blood increased: LDH (four times the control), GOT (two times), GPT (three times); they reached a maximal activity 12 h after injection of diluted CCl4. The levels of some enzymes were also examined in the liver. With pure CCl4, maximal enzyme activity in blood occurred earlier (6 h). A 6 to 10 times increase was observed for GOT, GPT, LDH, GR, and GDH. Histopathological observations were correlated with these enzymes studies.
An Aeromonas disease characterized by the destruction of the dermis, the exposure of the muscle, and by the presence of numerous petechiae in the liver enabled us to examine the relationships between naturally induced tissue damage and enzyme levels in blood. The levels of seven blood enzymes were determined and the most significant modifications were observed for LDH and CPK. which increased their concentration from 3 to 7 times respectively. A pyruvate saturation test demonstrated that LDH was probably from liver as it was observed after CCl4 poisoning. The contribution of such biochemical studies in fish research is evaluated.  相似文献   

4.
Mechanisms of interleukin-18 (IL-18) and interleukin-10 (IL-10) in lipopolysaccharide (LPS) induced endotoxemia are not clear; their protective role is being investigated so that they may effectively modulate the host cytokine levels during endotoxemia. The aim of the study was to evaluate protective effects of IL-18 and IL-10 in experimentally induced endotoxemia in mice correlating the changes in tissue anti-oxidant enzymes and circulating cytokines. Liver injury was determined by estimation of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT), serum nitric oxide (NOx), hepatic anti-oxidant enzyme and cytokine content in LPS (250 microg/kg) induced endotoxemic mice receiving either IL-18 (500 ng/mouse) or IL-10 (600 ng/mouse) treatment. Mice (87% of IL-10 treated and 74% of IL-18 treated) survived when administered prior to LPS challenge. Pre-treatment of mice with either IL-10 or IL-18 followed by LPS, lead to reduction in SGPT and SGOT level, serum NOx, and altered hepatic anti-oxidant enzymes activity and myeloperoxidase activity than the only LPS treated group. Marked reduction in the amounts of LPS-induced hepatic and splenic TNF-u content has been observed after IL-10 pre-treatment. Results suggested that attenuating the induction of TNF-alpha and IFN-gamma and subsequent induction of nitric oxide formation in response to LPS may in part account for efficient protection by IL-18 and IL-10 in the reduction of LPS-induced liver injury.  相似文献   

5.
Endotoxin shock is a major cause of death in patients with septicemia. Endotoxin induces nitric oxide (NO) production and causes tissue damage. In addition, the release of oxygen free radicals has also been observed in endotoxin shock and was found to be responsible for the occurrence of multiple organ failure. The purpose of the present study was to evaluate suitable indicators for early and late stages of endotoxin shock. The experiments were designed to induce endotoxin shock in conscious rats by means of anEscherichia coli lipopolysaccharide (LPS) injection. Arterial pressure (AP) and heart rate (HR) were continuously monitored for 72 h after LPS administration. The maximal decrease in AP and increase in HR and nitrate/nitrite level occurred at 9–12 h following LPS administration. The white blood cell (WBC) count had decreased at 3 h. Hydroxyl radical (methyl guanidine, MG) decreased rapidly after LPS administration. Plasma levels of blood urea nitrogen (BUN), creatinine (Cr), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and glutamic oxaloacetic transaminase increased before the rise of amylase. Our results suggest that changes in AP, HR, WBC, free radicals, and chemical substances (BUN, Cr) can possibly serve as approximate indicators for the early stage of endotoxin shock. Severe multiple organ damage may be caused by amylase release in the late stage of endotoxin shock.  相似文献   

6.
Yan YJ  Li Y  Lou B  Wu MP 《Life sciences》2006,79(2):210-215
High density lipoprotein (HDL) binds lipopolysaccharide (LPS) and neutralizes its toxicity. The aim of our study was to investigate the effects of Apolipoprotein (ApoA-I), the major apolipoprotein of HDL, on LPS-induced acute lung injury (ALI) and endotoxemia. BALB/c mice were challenged with LPS, followed by ApoA-I or saline administration for 24h. The mice were then sacrificed and histopathological analysis of the lung was performed. We found that ApoA-I could attenuate LPS-induced acute lung injury and inflammation. To investigate the mechanisms, we measured tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) levels in the serum and bronchoalveolar lavage (BAL) fluid and found that ApoA-I could significantly inhibit LPS-induced increases in the IL-1beta and TNF-alpha levels in serum (P<0.05, respectively), as well as in the IL-1beta, TNF-alpha, and IL-6 levels in BAL fluid (P<0.01 and P<0.05, P<0.05, respectively). Moreover, we evaluated the effect of ApoA-I on the mortality of L-929 cells which were attacked by LPS-activated peritoneal macrophages. We found that ApoA-I could significantly inhibit the LPS-induced cell death in a dose-dependent fashion. Furthermore, we investigated in vivo the effects of ApoA-I on the mortality rate and survival time after LPS administration and found that ApoA-I significantly decreased the mortality (P<0.05) and increased the survival time (P<0.05). In summary, the results suggest that ApoA-I could effectively protect against LPS-induced endotoxemia and acute lung damage. The mechanism might be related to inhibition of inflammatory cytokine release from macrophages.  相似文献   

7.
Xian XH  Huang XL  Zhou XH  Zhang JK  Ling YL 《生理学报》2007,59(3):357-362
为探讨硫化氢(hydrogen sulfide,H2S)与内毒素血症大鼠心肌损伤的关系,采用静脉注射脂多糖(lipopolysaccharide,LPS)的方法制备内毒素血症大鼠模型,将雄性Wistar大鼠随机分为正常对照组、LPS组、LPS+炔丙基甘氨酸(propargylglycine,PPG,H2S代谢酶抑制剂)组、LPS+NaHS(H2S供体)组。观察给药后4h内大鼠平均动脉压(mean arterial pressure,MAP)的变化,测定血浆肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)和H2S含量,光学显微镜观察心肌组织形态学变化并测定心肌组织中TNF-α、H2S含量及乳酸脱氢酶(lactate dehydrogenase,LDH)和髓过氧化物酶(myeloperoxidase,MPO)的活性。结果如下:(1)与正常对照组相比,LPS组大鼠血压迅速下降,血浆TNF-α、H2S含量显著增高,且血浆中H2S含量与血压呈显著负相关,LPS注射后1、2、4h时相关系数分别为-0.936、-0.913和-0.908(均P〈0.05);心肌组织TNF-α、H2S含量及LDH、MPO活性也明显升高,并出现组织损伤;(2)给予PPG能显著抑制血浆TNF-α、H2S含量的增高,并可显著减轻LPS所致的血压下降(均P〈0.05)和心肌组织损伤,降低心肌组织中TNF-α、H2S含量及LDH、MPO活性;(3)给予NaHS后,与LPS组相比,大鼠血浆TNF-α、H2S含量增高,血压明显下降(均P〈0.05),心肌组织损伤加重,心肌组织中TNF-α、H2S含量及LDH、MPO活性增高。结果提示,内毒素血症大鼠低血压和心肌损伤的部分原因是由于H2S生成增多。  相似文献   

8.
To determine to what extent lipopolysaccharide-induced IL-10 production capacity is determined by polymorphisms in toll-like receptor-4 (TLR4) and the IL-10 promoter region, we measured in vivo IL-10 and TNF-alpha production in patients undergoing elective cardiopulmonary bypass surgery, a major surgical trauma associated with ischemia-reperfusion injury that triggers an endotoxemia and profound inflammatory response in most patients. Ex vivo the IL-10 and TNF-alpha production was measured in a whole blood stimulation assay, using 3 LPS concentrations. Positive correlations were found between TNF-alpha and IL-10 production ex vivo, upon stimulation with each of the LPS concentrations. Also, the estimated TNF-alpha and IL-10 EC50, and TNF-alpha(max) and IL-10max were positively correlated (r = 0.203; p = 0.023 and r = 0.287; p = 0.001, respectively), indicating that these parameters describing LPS sensitivity and maximal production capacity, respectively, can be estimated by measuring either TNF-alpha or IL-10. Interleukin-10 concentrations in patients experiencing endotoxemia in vivo negatively correlated with the IL-10 levels produced upon stimulation with 1000 ng/mL LPS as well as the estimated IL-10max ex vivo. In vivo, a positive correlation between the TNF-alpha concentration at time-point 2 and the IL-10 concentration at time-point 3 was found, consistent with an important contribution of the magnitude of TNF-alpha release upon the subsequent IL-10 production. Carriers of the IL-10 promoter -1330G, -1082A, -819T, -592A (GATA) haplotype had lower IL-10 production ex vivo upon stimulation with 10 and 100 ng/mL LPS and higher EC50 values (the estimated LPS concentration at which 50% of the maximal IL-10 response is reached) as compared to carriers of the other haplotypes combined, indicating decreased LPS sensitivity ex vivo. These individuals did not differ from the others in interleukin-10 production capacity upon stimulation with a high LPS concentration (i.e., 1000 ng/mL) and the estimated IL-10(max) values, were similar, indicating unimpaired maximal IL-10 production capacity ex vivo. Carriers of the IL-10 promoter AGCC haplotype had lower EC50 values as compared to carriers of the other haplotypes combined, indicating increased LPS sensitivity ex vivo. In accordance with this finding, carriers of the AGCC haplotype had higher circulating IL-10 levels in vivo. The common TLR4 polymorphisms (Asp299Gly and Thr399Ile) were associated with slightly higher IL-10 production capacity ex vivo and in vivo, however, this was not statistically significant. Our results indicate that polymorphisms in the proximal IL-10 promoter region are associated with in vivo and ex vivo LPS sensitivity. The contribution to the inter-individual variation, however, is limited since the variation between individuals in LPS sensitivity and IL-10 production capacity can only partly be attributed to these IL-10 promoter polymorphisms.  相似文献   

9.
10.
11.
Wang Y  Zhu X  Wu G  Shen L  Chen B 《Journal of lipid research》2008,49(8):1640-1645
HDL has been shown to be able to neutralize the toxicity of lipopolysaccharide (LPS). Our previous study (J. Lipid Res. 2005. 46: 1303-1311) characterized the properties of secondary structure and in vitro functions of different cysteine mutants of apolipoprotein A-I. Here, we reconstituted recombinant HDLs (named rHDLwt, rHDL52, rHDL74, rHDL107, rHDL129, rHDL173, rHDL195, and rHDL228) by mixing wild type or those mutants with dipalmitoyl phosphatidylcholine and examined their in vivo effects on LPS-induced endotoxemia in mice. Our results showed that 24 h after injection, mice receiving rHDL74 or rHDL52 had a significant decrease of plasma tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1beta), compared with control mice receiving either saline or rHDLwt (P < 0.05). Administration of rHDL74 to mice injected with LPS also led to a decrease of plasma IL-6, protection of lung against acute injury, and attenuation of endotoxin-induced clinical symptoms in mice, compared with controls injected with LPS only. However, injection of rHDL228 significantly increased plasma concentration of TNF-alpha and exacerbated LPS-induced lung injury. In summary, compared with rHDLwt, rHDL74 and rHDL52 exhibit higher anti-inflammation capabilities, whereas rHDL228 shows hyper-proinflammation by exacerbating LPS-induced endotoxemia in mice.  相似文献   

12.
Dextromethorphan (DM), an antitussive agent, has been claimed to have anti-inflammatory and immunomodulatory effects in vitro. Thus, the aim of this study was to evaluate the effects of DM on sepsis induced by intravenous (i.v.) administration of lipopolysaccharide (LPS) in anesthetized Wistar rats and by intraperitoneal administration in conscious ICR mice. Results demonstrated that pretreatment with DM (1,5 and 10 mg/kg, i.v.) significantly attenuated the deleterious hemodynamic changes (e.g., hypotension and tachycardia) in rats treated with LPS. Meanwhile, DM (5 mg/kg) significantly inhibited the elevation of plasma tumor necrosis factor- and interleukin-10 levels, as well as values of GOT and GPT (as an index of liver function), and BUN and creatinine (as an index of renal function) caused by LPS. The induction of inducible NO synthase and the overproduction of NO and superoxide anions by LPS were also reduced by DM. Moreover, infiltration of neutrophils into the lungs and liver of rats 6 h after treatment with LPS was also reduced by DM. In conclusion, the beneficial effects of DM on LPS-induced sepsis result from its anti-inflammatory and antioxidant effects. Thus, DM can possibly be used as a prophylactic agent for sepsis in the future.  相似文献   

13.
Tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) have been implicated in cardiac dysfunction during endotoxemia. Because IL-18 is a proinflammatory cytokine known to mediate the production of TNF-alpha and IL-1beta and to induce the expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), we hypothesized that neutralization of IL-18 would attenuate lipopolysaccharide (LPS)-induced cardiac dysfunction. Mice (C57BL/6) were injected with LPS (0.5 mg/kg ip) or vehicle (normal saline), and left ventricular developed pressure (LVDP) was determined by the Langendorff technique. LVDP was depressed by 38% at 6 h after LPS. LPS-induced myocardial dysfunction was associated with increased myocardial levels of TNF-alpha and IL-1beta as well as increased expression of ICAM-1/VCAM-1. Pretreatment with neutralizing anti-mouse IL-18 antibody attenuated LPS-induced myocardial dysfunction (by 92%) and was associated with reduced myocardial IL-1beta production (65% reduction) and ICAM-1/VCAM-1 expression (50% and 35% reduction, respectively). However, myocardial TNF-alpha levels were not influenced by neutralization of IL-18. In conclusion, neutralization of IL-18 protects against LPS-induced myocardial dysfunction. IL-18 may mediate endotoxemic myocardial dysfunction through induction of and/or synergy with IL-1beta, ICAM-1, and VCAM-1.  相似文献   

14.
The acute-phase expression of pig MAP (major acute-phase protein)/ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4) and haptoglobin were analysed in primary cultures of isolated pig hepatocytes in response to recombinant human (rh) cytokines: tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1), interleukin-6 (IL-6), as well as to bacterial lipopolysaccharide (LPS). Analysis of pig MAP/ITIH4 and haptoglobin mRNAs was carried out by RT-PCR amplification. Secreted proteins from the cytokine-treated hepatocytes were quantified by immunochemical techniques. Time-course and dose-response experiments show that pig MAP/ITIH4 and haptoglobin belong to the type II acute-phase proteins, as they are specifically induced by rhIL-6 and not by rhTNF-alpha or rhIL-1. Stimulation of cultured pig hepatocytes with rhIL-6 for 48 h at doses of 1000 U.mL-1 showed a fourfold to fivefold increase in pig MAP/ITIH4 concentration in the medium, while the concentration of haptoglobin only increased twofold. A similar increase in the concentration of pig MAP/ITIH4 was also observed in media of LPS-treated hepatocytes with the simultaneous generation of IL-6 by the Kupffer cells present in the cultures. Albumin secretion decreased after stimulation with doses of 100 or 1000 U.mL-1 rhTNF-alpha, rhIL-1 or rhIL-6. Therefore, it can be concluded that pig MAP/ITIH4 behaves as a major acute-phase protein produced by porcine hepatocytes under the effect of inflammatory cytokines.  相似文献   

15.
Twenty-four barrows were used to investigate the effects of beta-glucan on immune function in weaned piglets. Pigs (8.09 +/- 0.20 kg, 28 d of age) were fed a diet without or with supplemented beta-glucan (50 mg/kg feed). All pigs were injected with ovalbumin (OVA) on day 14 to investigate their humoral immune response. On day 28, lymphocytes were isolated from all pigs to determine the effects of beta-glucan on cellular immunity of pigs in vitro. Lymphocytes from six pigs of each group were incubated with 16 microg lipopolysaccharide (LPS) per ml culture medium, the remainder with an equivalent volume of culture medium alone. Samples were collected at 0, 3, 6, 12, 18, 24, and 48 h after LPS addition for determination of interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and interleukin-10 (IL-10). On day 31, six pigs of each group were injected with either LPS (25 microg/kg BW) or an equivalent amount of sterile saline. Blood samples were collected at 3 h after LPS injection for analysis of IL-6, TNF-alpha, and IL-10 in plasma. The results indicated that dietary beta-glucan enhanced pig antibody response to OVA only in the first week after injection. In vitro, the increases of IL-6 and TNF-alpha in culture medium were partially dampened in pigs supplemented with beta-glucan when their lymphocytes were incubated with LPS, whereas the increase of IL-10 was potentiated. In vivo, dietary beta-glucan attenuated the increase of plasma IL-6 and TNF-alpha, and enhanced the increase of plasma IL-10 when pigs were challenged with LPS. These results demonstrate that beta-glucan can improve the humoral immunity of pigs and modulate cellular immunity of pigs by mitigating the elevation of pro-inflammatory cytokines and enhancing the increase of anti-inflammatory cytokines after an immunological challenge.  相似文献   

16.
Interleukin-10 regulates arterial pressure in early primate pregnancy   总被引:3,自引:0,他引:3  
OBJECTIVES: In pregnancy, the placental contribution of cytokines to maternal immunosuppression has been established, however their role in normal maternal blood pressure regulation has not been identified. We investigate the contribution of interleukin-10 (IL-10) and tumor necrosis factor-alpha (TNF-alpha) to the vasodilation of early pregnancy in non-human primates. We also sequenced the IL-10 baboon gene and compared it with humans. METHODS: The effect of four different treatments, administered sequentially (semi-random-design) on resting 18h, night time, or hourly mean arterial pressure (MAP) and heart rate (HR) were measured using telemetry. An anti-human IL-10 monoclonal antibody (MAb, 1mg, n=7), anti-TNF-alpha antibody (n=3), a combination of anti-IL-10 and anti-TNF-alpha antibodies (n=5) or saline (n=3) control were administered intravenously to baboons in early pregnancy. Plasma and placental IL-10 concentration was measured before and after injection in all animals. RESULTS: Anti-human IL-10 MAb caused a significant increase in MAP of 2.6+/-0.5mmHg over the 18-h period (p<0.05). Administration of TNF-alpha alone or in combination with IL-10 did not alter MAP. There was 97% sequence homology of IL-10 cDNA between humans and baboons. CONCLUSIONS: IL-10 was shown to regulate the vasodilation of early pregnancy in Papio hamadryas. This partial role of IL-10 in the early BP response of primate pregnancy may be relevant to pathophysiological states of human pregnancy such as preeclampsia.  相似文献   

17.
Severe injury deranges immune function and increases the risk of sepsis and multiple organ failure. Kupffer cells play a major role in mediating posttraumatic immune responses, in part via different Toll-like receptors (TLR). Although mitogen-activated protein kinases (MAPK) are key elements in the TLR signaling pathway, it remains unclear whether the activation of different MAPK are TLR specific. Male C3H/HeN mice underwent midline laparotomy (i.e., soft tissue injury), hemorrhagic shock (MAP approximately 35 mm Hg for 90 min), and resuscitation. Kupffer cells were isolated 2 h thereafter, lysed and immunoblotted with antibodies to p38, ERK1/2, or JNK proteins. In addition, cells were preincubated with specific inhibitors of p38, ERK1/2, or JNK MAPK followed by stimulation with the TLR2 agonist, zymosan; the TLR4 agonist, LPS; or the TLR9 agonist, CpG DNA. Cytokine (TNF-alpha, interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and KC) production was determined by cytometric bead array after 24 h in culture. MAPK activity as well as TNF-alpha, MCP-1, and KC production by Kupffer cells were significantly increased following trauma-hemorrhage. TLR4 activation by LPS stimulation increased the levels of all measured cytokines. CpG-stimulated TLR9 signaling increased TNF-alpha and IL-6 levels; however, it had no effect on chemokine production. Selective MAPK inhibition demonstrated that chemokine production was mediated via p38 and JNK MAPK activation in TLR2, -4, and -9 signaling. In contrast, TNF-alpha and IL-6 production was differentially regulated by MAPK depending on the TLR pathway stimulated. Thus, Kupffer cell TLR signaling employs different MAPK pathways in eliciting cytokine and chemokine responses following trauma-hemorrhage.  相似文献   

18.
CCK-8对内毒素休克大鼠肺脏细胞因子的抑制效应   总被引:8,自引:1,他引:7  
Meng AH  Ling YL  Zhao XY  Zhang JL  Wang QH 《生理学报》2002,54(2):99-102
观察八肽胆囊收缩素(cholecystokinin-octapeptide,CCK-8)改善脂多糖(lipopolysaccharide,LPS)引起的大鼠内毒素性休克(endotoxic shock,ES)过程中血清及肺脏细胞因子的变化,探讨p38比裂素活化蛋白激酶(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入LPS(p38 mito-gen-activated protein kinase,p38 MAPK)的信号转导作用。用生理多道记录仪观察尾静脉注入 LPS(8mg/kg i.v.)复制的SD大鼠ES模型、LPS注入前10min尾静脉注入CCK-8(40ug/kg i.v.)、单独注入CCK-8(40Uug/kg i.v.)或生理盐水(对照)的四组大鼠平均动脉血压(MAP)的改变,应用ELISA试剂盒检测血清和肺脏中炎性细胞因子(TNF-a、IL-1β和IL-6)的变化。用Western blot检测肺脏p38 MAPK的表达。结果显示:CCK-8可改善LPS引起的大鼠MAP的下降。与对照组相比,LPS可显著增加血清和肺脏TNF-a、IL-1β和IL-6含量;CCK-8可显著抑制LPS诱导的血清和肺脏TNF-a、IL-1β和IL-6的增加。CCK-8可增加ES大鼠肺脏磷酸化p38 MAPK的表达。结果提示CCK-8可改善ES大鼠MAP的降低,并对肺脏促炎性细胞因子过量产生有抑制作用,p38MAPK可能参与了其信号转导机制。  相似文献   

19.
Male albino rats were given subcutaneous injection of isoproterenol (10 mg/100 g body wt) twice at an interval of 24 hr to induce myocardial infarction. The rats showed massive myocardial necrosis and increased activities of creatinine phosphokinase (CPK), glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT), in serum, while a decrease in nitric oxide synthase activity and lower levels of palmitate oxidation into CO2 and ATP were observed in the heart. Rats pre-treated with coconut protein or L-arginine showed significantly decreased CPK, GOT and GPT activities in the serum. There was significantly higher nitric oxide synthase activity and higher rate of palmitate oxidation into CO2 and increased levels of ATP in the heart in these groups. These observations indicate the cardioprotective effect of coconut protein, which may be attributed to the high content of L-arginine present in it.  相似文献   

20.
Enzymatic activities were determined in the prosencephalon of rats which had been exposed repeatedly for 8 hrs, either from the age of 1 to 17 days or in adulthood, to an altitude of 7,000 m in a barometric chamber (up to a total of 104 hrs). The activity of enzymes was assayed 20 hrs after the last exposure. The results were compared with values obtained 20 hrs after a single 8-hour exposure to a stimulated altitude of 7,000 m in 17-day-old and adult rats. In young rats a single exposure to hypoxia, the most elevated was the activity of LDH and isoCDH, while GPT and CPK were decreased. After repeated hypoxia, the most significant increasw was noted in the activity of PK and again a decrease in GPT and CPK. In adulthood, a single exposure to hypoxia causes the greatest increase in CPK, while LDH and GOT are reduced. Following repeated hypoxia, none of the enzyme activities were increased by more than 20%, while LDH, GOT, GIDH and CPK were again lower. It is concluded from these results that a single exposure to hypoxia increases anaerobic glycolysis in the immature nervous tissue and improves its oxygen utilization. The relationship between glycid and amino acid metabolism are not appreciably altered. On the other hand, a general reduction of bioenergetics and biosynthesis occurs in adulthood. Repeated hypoxia, on the contrary, has similar after-effects in both age groups, namely inhibition of aerobic metabolism and of the relations between glycid and amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号