首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The significance of divalent calcium ions (Ca2+) to cell cycle progression has been a subject of study for several decades, with a regulatory role for Ca2+ suggested in distinct cell types and multiple organisms. Our interest in proliferative vascular diseases led us to focus on mammalian vascular smooth muscle cells (VSMC) in particular, in which we and others had shown that a coordinate elevation in the intracellular free Ca2+ concentration is required for G1 to S phase cell cycle progression. However, the molecular basis for this Ca2+-sensitive cell cycle transition was not known.Our recent discovery of a functional protein-protein interaction between the late G1-active cyclin E1 and the major calcium signal-transducing factor Calmodulin (CaM) sheds new light on the mechanism(s) through which Ca2+ concentrations regulate cell cycle. Having identified a CaM-binding site on cyclin E1, our studies support a direct role for CaM in mediating Ca2+-sensitive cyclin E/cdk2 activity and G1 to S phase transitions in VSMC. The CaM binding site identified on cyclin E1 has a Kd for CaM consistent with that of known CaM-binding proteins, and is composed of a 22 amino acids N-terminal sequence that is highly conserved across several mammalian species. Deletion of this binding site abolished CaM binding and Ca2+-sensitive cyclin E/cdk2 activity.Here we provide our perspectives on the literature supporting a role for Ca2+ in cell cycle regulation, focusing on the evidence implicating CaM in this functionality, and discuss the potential for therapeutic modulation of CaM-dependent cell cycle machinery.  相似文献   

2.
SR compartment calcium and cell apoptosis in SERCA overexpression   总被引:6,自引:0,他引:6  
The relationship between SR Ca2+ ATPase (SERCA) activities, cell calcium level, SR calcium store and cell cycle events is not clearly understood. We studied SERCA overexpression in Cos cells using an adenovirus vector. Twofold increases in SERCA mRNA and in protein were correlated with a 2.3-fold and a 1.6-fold paralleled increase in SR calcium pump activity (R = 0.97 and R = 0.99 respectively). Dose-related apoptotic cell death was associated with SERCA overexpression (R = 0.92). When serum was reduced to 4%, cell apoptosis further increased from 20.7 +/- 4.8% to 47.5 +/- 12.9% (M+/-SD; P<0.05; n=3). Flow cytometry identified cell cycle arrest at the G2/M phase. The interleukin-1 converting enzyme (ICE) inhibitor z-VAD-fmk reduced apoptosis for low-, medium- and high-expressing constructs, whereas the CPP-32 inhibitor z-DEVD-fmk had no effect. Flow cytometry using Fluo-3 and Fura-Red revealed a 1.5-fold higher basal calcium and a 10-fold SR calcium overload. ICE inhibitor z-VAD-fmk did not alter calcium loading. An epitope-tagged SERCA mutant, which has no intrinsic Ca2+-pump activities, had a much smaller effect on the SR calcium. These findings suggest that SERCA2A overexpression has an intrinsic role in altering cell-cycle progression, augmenting cellular and SR calcium loading, and precipitating ICE protease-mediated apoptosis; this represents as a novel model for primary SR calcium overload and associated cell apoptosis.  相似文献   

3.
A fission yeast B-type cyclin functioning early in the cell cycle.   总被引:24,自引:0,他引:24  
A Bueno  H Richardson  S I Reed  P Russell 《Cell》1991,66(1):149-159
We have cloned a fission yeast gene, cig1+, encoding a 48 kd product that is most similar to cyclin B proteins. The cig1+ protein has a "cyclin box" approximately 40% identical to B-type cyclins of other species, but lacks the "destruction box" required for proteolysis of mitotic cyclins. Deletion of cig1+ had no observable effect on cell viability or progression through G2 or M phase, but instead caused a marked lag in the progression from G1 to S phase. G1 constituted approximately 70% of the cell cycle in cig1 deletion strains, as compared with less than 10% in cig1+ strains. Constitutive cig1+ overexpression was lethal, causing cessation of growth and arrest in G1. Expression of cig1+ failed to rescue an S. cerevisiae strain lacking CLN Start cyclins. Thus, cig1+ identifies a new class of B-type cyclin acting in G1 or S phase that appears to be functionally distinct from all previously described cyclin proteins.  相似文献   

4.
Zhang Q  Scholz PM  He Y  Tse J  Weiss HR 《Cell calcium》2005,37(3):259-266
We tested the hypothesis that cGMP-induced reductions in cardiac myocyte function were related to activation of the sarcoplasmic reticulum Ca2+-ATPase (SERCA) and cGMP-dependent phosphorylation of phospholamban. Ventricular myocyte function was measured using a video edge detector (n = 11 rabbits). Thapsigargin (TG) or cyclopiazonic acid (CPA) were used to inhibit SERCA. 8-Bromo-cGMP was added at 10(-6), 10(-5) M followed by TG 10(-8) M or KT5823 (cGMP-protein kinase inhibitor, 10(-6) M) prior to TG or CPA. Cyclic GMP-dependent protein phosphorylation and immunoblotting with anti-phospholamban antibody were examined. TG 10(-8) M significantly increased percent shortening (from 6.6+/-0.7 to 9.1+/-1.3%). Cyclic GMP 10(-5) M significantly decreased cell shortening from 9.3+/-0.9 to 5.1+/-0.6%. This was partially reversed by KT5823 (5.1+/-0.6 to 8.2+/-1.4%) suggesting that negative functional effects of cGMP were partially through the cGMP-dependent protein kinase. Addition of TG after cGMP also reduced the negative effects of cGMP on myocyte shortening suggesting involvement of SERCA in cGMP signaling. TG after cGMP and KT5823 treatment did not alter myocyte contractility (8.2+/-1.4 to 7.2+/-1.3%). CPA had similar effects as those of TG. Protein phosphorylation and immunoblotting showed that phospholamban was a target of the cGMP protein kinase. These results indicated that the cyclic GMP-induced reductions in myocyte function were partially mediated through the action of SERCA. It further suggested that cGMP signaling affects myocyte function through phosphorylation of phospholamban which regulates SERCA activity.  相似文献   

5.
Calcium (Ca(2+)) and calmodulin (CaM) are required for progression of mammalian cells from quiescence into S phase. In multiple cell types, cyclosporin A causes a G(1) cell cycle arrest, implicating the serine/threonine phosphatase calcineurin as one Ca(2+)/CaM-dependent enzyme required for G(1) transit. Here, we show, in diploid human fibroblasts, that cyclosporin A arrested cells in G(1) before cyclin D/cdk4 complex activation and retinoblastoma hyperphosphorylation. This arrest occurred in early G(1) with low levels of cyclin D1 protein. Because cyclin D1 mRNA was induced normally in the cyclosporin A-treated cells, we analyzed the half-life of cyclin D1 in the presence of cyclosporin A and found no difference from control cells. However, cyclosporin A treatment dramatically reduced cyclin D1 protein synthesis. Although these pharmacological experiments suggested that calcineurin regulates cyclin D1 synthesis, we evaluated the effects of overexpression of activated calcineurin on cyclin D1 synthesis. In contrast to the reduction of cyclin D1 with cyclosporin A, ectopic expression of calcium/calmodulin-independent calcineurin promoted synthesis of cyclin D1 during G(1) progression. Therefore, calcineurin is a Ca(2+)/CaM-dependent target that regulates cyclin D1 accumulation in G(1).  相似文献   

6.
C6 glioma - Ca2+ depletion - proliferation arrest morphology change - CDK inhibitor In this study, we investigated the role of the intracellular calcium store in modulating the cellular proliferation and the expression of cell cycle regulatory proteins in cultured C6 glioma cells. By means of microspectrofluorimetry and Ca(2+)-sensitive indicator fura-2, we found that the intracellular Ca2+ pump inhibitors, thapsigargin (TG) irreversibly and 2,5-ditert-butyl-hydroquinone (DBHQ) reversibly depleted the Ca(2+)-store accompanied with the induction of G0/G1 arrest, an increase in glial fibrillary acidic protein (GFAP) expression and morphological changes from a round flat shape to a differentiated spindle-shaped cell. The machinery underlying these changes induced by Ca(2+)-store depletion was investigated. The results indicated that Ca(2+)-store depletion caused an increased expression of p21 and p27 proteins (cyclin-dependent kinase inhibitors), with unchanged mutant p53 protein of C6 cells but reduced amounts of the cell cycle regulators: cyclin-dependent kinase 2 (CDK2), cdc2, cyclin C, cyclin D1, cyclin D3 and proliferating cell nuclear antigen (PCNA) in a time-dependent manner. These findings indicate a new function of the endoplasmic reticulum (ER) Ca2+ store in regulating cellular proliferation rate through altering the expression of p21 and p27 proteins. Moreover, cellular differentiation as revealed by spindle-shaped morphology and induced GFAP expression were also modulated by the ER Ca2+ store. The implication of this finding is that the abnormal growth of cancer cells such as C6 glioma cells may be derived from a signalling of the ER which can be manipulated by depleting the Ca2+ store.  相似文献   

7.
Polycystin-1 (PC1) is a large transmembrane protein important in renal differentiation and defective in most cases of autosomal dominant polycystic kidney disease (ADPKD), a common cause of renal failure in adults. Although the genetic basis of ADPKD has been elucidated, molecular and cellular mechanisms responsible for the dysregulation of epithelial cell growth in ADPKD cysts are still not well defined. We approached this issue by investigating the role of the carboxyl cytoplasmic domain of PC1 involved in signal transduction on the control of kidney cell proliferation. Therefore, we generated human HEK293 cells stably expressing the PC1 cytoplasmic tail as a membrane targeted TrkA-PC1 chimeric receptor protein (TrkPC1). We found that TrkPC1 increased cell proliferation through an increase in cytoplasmic Ca2+ levels and activation of PKC alpha, thereby upregulating D1 and D3 cyclin, downregulating p21waf1 and p27kip1 cyclin inhibitors, and thus inducing cell cycle progression from G0/G1 to the S phase. Interestingly, TrkPC1-dependent Ca2+ increase and PKC alpha activation are not constitutive, but require serum factor(s) as parallel component. In agreement with this observation, a significant increase in ERK1/2 phosphorylation was observed. Consistently, inhibitors specifically blocking either PKC alpha or ERK1/2 prevented the TrkPC1-dependent proliferation increase. NGF, the TrkA ligand, blocked this increase. We propose that in kidney epithelial cells the overexpression of PC1 C-terminus upregulates serum-evoked intracellular Ca2+ by counteracting the growth-suppression activity of endogenous PC1 and leading to an increase in cell proliferation.  相似文献   

8.
The effect of growth factors on the cell cycle progression, except G1/S transition, is poorly understood. Herein, we examined the effect of hepatocyte growth factor (HGF) treated at S phase on the cell cycle progression of HeLa cells. Interestingly, the treatment resulted in G2 delay, evidenced by flow cytometric and mitotic index analyses. The delay corresponded with the delay of degradation of cyclin A and cyclin B, and the delay of decrease of Cdk1/cyclin B and Cdk2/cyclin A kinase activities. As for the signaling responsible, sustained activation of ERK, but neither of p38MAPK nor of JNK, was observed after HGF treatment at S phase. Furthermore, U0126, an inhibitor of MEK1, and DN-MEK partially abrogated the G2 delay, indicating that activation of MEK-ERK pathway is involved. Taken together, HGF treatment of HeLa cells at S phase induces G2 delay partially through sustained activation of ERK signaling.  相似文献   

9.
Endogenously expressed human canonical transient receptor potential 1 (hTRPC1) and human canonical transient receptor potential 6 (hTRPC6) have been shown to play a role in store-operated Ca2+ entry (SOCE) in human platelets, where two mechanisms for SOCE, regulated by the dense tubular system (DTS) or the acidic granules, have been identified. In cells preincubated for 1 min with 100 microM flufenamic acid we show that hTRPC6 is involved in SOCE activated by both mechanisms, as demonstrated by selective depletion of the DTS or the acidic stores, using thapsigargin (TG) (10 nM) or 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ) (20 microM), respectively, although it is more relevant after acidic store depletion. Co-immunoprecipitation experiments indicated that depletion of both stores separately results in time-dependent interaction between hTRPC1 and hTRPC6, and also between both hTRPCs and the type II IP3 receptor (IP3RII). The latter was greater after treatment with TG. TBHQ-induced coupling between hTRPC1 and 6 was transient and decreased after 30s of treatment, while that induced by TG increased for at least 3 min. TBHQ induced association between SERCA3, located in the acidic stores, hTRPC1, hTRPC6 and Orai1. TBHQ also evoked coupling between SERCA3 and IP3RII, presumably located in the DTS, thus suggesting interplay between both Ca2+ stores. Similarly, TG induces the interaction of SERCA2b with hTRPC1 and 6 and the IP3RII. The interactions between hTRPC1, hTRPC6, IP3RII and SERCA3 were impaired by disruption of the microtubules, supporting a role for microtubules in Ca2+ homeostasis. In conclusion, the present data demonstrate for the first time that hTRPC1, hTRPC6, IP3RII and SERCA3 are parts of a macromolecular protein complex activated by depletion of the intracellular Ca2+ stores in human platelets.  相似文献   

10.
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.  相似文献   

11.
E1A + c-Ha-ras-transformants overexpressing bcl-2 oncogene are able to be arrested at the G1/S boundary of the cell cycle after DNA damage and upon serum starvation, this cell cycle blockage being accompanied by a decrease in the activity of cyclin E--Cdk2 complexes. Roscovitine-induced inhibition of cyclin-dependent kinases (Cdks) activity does not result in the G1/S arrest of E1A + c-Ha-ras + bcl-2-transformants. Roscovitine treatment causes an accumulation of G2/M cells, mainly at the expense of mitotic cells. However, the expression of Bcl-2 oncoproducts does not re-establish the regulation of mitotic events broken by introduction of E1A and c-Ha-ras oncogenes in normal cells, as revealed by the treatment of E1A + c-Ha-ras + bcl-2-transformants with nocodazole inducing mitotic arrest in normal cells. In spite of the elevated expression of antiapoptotic bcl-2 gene in transformants, nocodazole treatment results in mass apoptotic death preceded by polyploidy. Roscovitine also induces apoptosis with no polyploid cell accumulation being observed. Inhibition of Cdks activity with Roscovitine, as well as violation of microtubule depolymerization with nocodazole result in the apoptotic death in the tested cell lines sensitive (E1A + c-Ha-ras) and resistant (E1A + c-Ha-ras + bcl-2) to damaging agents. Thus, the application of Roscovitine, a specific inhibitor of Cdks, suggests that the decrease in Cdks activity in E1A + c-Ha-ras + bcl-2-transformants is not likely to be responsible for G1/S cell cycle arrest realization after damaging influences. Moreover, an antiproliferative effect of Bcl-2 in E1A + c-Ha-ras-transformants is restricted by restoration of cell cycle events at G1/S and G2/M boundaries, and does not concern the program of mitotic events regulation.  相似文献   

12.
Interactions between the transmembrane domains of phospholamban (PLB) and the cardiac Ca2+ pump (SERCA2a) have been investigated by chemical cross-linking. Specifically, C-terminal, transmembrane residues 45-52 of PLB were individually mutated to Cys, then cross-linked to V89C in the M2 helix of SERCA2a with the thiol-specific cross-linking reagents Cu2+-phenanthroline, dibromobimane, and bismaleimidohexane. V49C-, M50C-, and L52C-PLB all cross-linked strongly to V89C-SERCA2a, coupling to 70-100% of SERCA2a molecules. Residues 45-48 and 51 of PLB also cross-linked to V89C of SERCA2a, but more weakly. Evidence for the mechanism of PLB regulation of SERCA2a was provided by the conformational dependence of cross-linking. In particular, the required absence of Ca2+ for cross-linking implicated the E2 conformation of SERCA2a, and its enhancement by ATP confirmed E2 x ATP as the conformation with the highest affinity for PLB. In contrast, E2 phosphorylated with inorganic phosphate (E2P) and E2 inhibited by thapsigargin (E2 x TG) both failed to cross-link to PLB. These results with transmembrane PLB residues are completely consistent with cytoplasmic PLB residues studied previously, suggesting that the dissociation of PLB from the Ca2+ pump is complete, not partial, when the pump binds Ca2+ (E1 x Ca2) or adopts the E2P or E2 x TG conformations. V49C of PLB cross-linked to 100% of SERCA2a molecules, suggesting that this residue might have functional importance for regulation. Indeed, we found that mutation of Val49 to smaller side-chained residues V49A or V49G augmented PLB inhibition, whereas mutation to the larger hydrophobic residue, V49L, prevented PLB inhibition. A model for the interaction of PLB with SERCA2a is presented, showing that Val49 fits into a constriction at the lumenal end of the M2 helix of SERCA, possibly controlling access of PLB to its binding site on SERCA.  相似文献   

13.
Two agonist-releasable Ca(2+)stores have been identified in human platelets differentiated by the distinct sensitivity of their SERCA isoforms to thapsigargin (TG) and 2,5-di-(tert-butyl)-1,4-hydroquinone (TBHQ). Here we have examined whether the SERCA isotypes might be involved in store-operated Ca(2+)entry (SOCE) activated by the physiological agonist thrombin in human platelets. Ca(2+)-influx evoked by thrombin (0.01 U/mL) reached a maximum after 3 min, which was consistent with the decrease in the Ca(2+)content in the stores; afterwards, the extent of SOCE decreased with no correlation with the accumulation of Ca(2+)in the stores. Inhibition of SERCA2b, by 10 nM TG, and SERCA3, with 20 microM TBHQ, individually or simultaneously, accelerated Ca(2+) store discharge and subsequently enhanced the extent of SOCE stimulated by thrombin. In addition, TG and TBHQ modified the time course of thrombin-evoked SOCE from a transient to a sustained increase in Ca(2+) influx, which reveals a negative role for SERCAs in the regulation of SOCE. This effect was consistent under conditions that inhibit Ca(2+) extrusion by PMCA or the Na(+)/Ca(2+) exchanger. Coimmunoprecipitation experiments revealed that thrombin stimulates direct interaction between SERCA2b and 3 with the hTRPC1 channel, an effect that was found to be independent of SERCA activity. In summary, our results suggest that SERCA2b and 3 modulate thrombin-stimulated SOCE probably by direct interaction with the hTRPC1 channel in human platelets.  相似文献   

14.
15.
Variations in calcium concentration within the endoplasmic reticulum ([Ca(2+)](ER)) may play a role in cell growth. This study evaluates the regulation of calcium pools by growth modulators of prostate cancer (PC) cells, the insulin growth factor (IGF), and the tumor necrosis growth factor-alpha (TNFalpha) as well as evaluating the possible role of [Ca(2+)](ER) variations as signals for growth modulation. We show that IGF (5 ng/ml), which increases cell growth, induces an increase in [Ca(2+)](ER) whereas TNFalpha (1 ng/ml) which reduces cell proliferation and induces apoptosis, reduces [Ca(2+)](ER). IGF-induced [Ca(2+)](ER) increase is correlated to an overexpression of the sarcoendoplasmic calcium-ATPase 2B (SERCA2b), whereas TNFalpha-induced [Ca(2+)](ER) decrease is associated to a reduction in SERCA2b expression. Pretreatment with epidermal growth factors (EGF) or IGF does not prevent TNFalpha from affecting the induction of apoptosis, [Ca(2+)](ER) reduction and SERCA2b downregulation. Reduction in [Ca(2+)](ER) induced by thapsigargin (TG) (from 1 pM to 1 microM, 48 h) reduces LNCaP growth in a dose dependent manner and induces apoptosis when cells are treated with 1 microM TG. We also show that a transient TG application (1 pM, 1 nM, 1 microM 15 min) is insufficient to induce a long lasting decrease in [Ca(2+)](ER), since [Ca(2+)](ER) remains identical to the control for 48 h following TG application. These treatments (1 pM and 1 nM, 15 min) do not modify cell growth. However, TG (1 microM, 15 min) induces apoptosis. We thus identify [Ca(2+)](ER) and SERCA2b as a central targets for causing LNCaP PC cell life or death induced by growth modulators. Furthermore our results indicate that calcium pool contents can regulate cell growth.  相似文献   

16.
It has been long believed that the cyclin-dependent kinase 2 [Cdk2] binds to cyclin E or cyclin Aand exclusively promotes the G1/S phase transition and that Cdc2/cyclin B complexes play a majorrole in mitosis. We now provide evidence that Cdc2 binds to cyclin E [in addition to cyclin A & B]and is able to promote the G1/S transition. This new concept indicates that both Cdk2 and/or Cdc2can drive cells through G1/S phase in parallel. In this review we discuss the classic cell cycle modeland how results from knockout mice provide new evidence that refute this model. We focus on newroles of Cdc2 and p27 in regulating the mammalian cell cycle and propose a new model for cellcycle regulation that accommodates these novel findings.  相似文献   

17.
18.
Human cyclin A is required for mitosis until mid prophase.   总被引:12,自引:0,他引:12  
We have used microinjection and time-lapse video microscopy to study the role of cyclin A in mitosis. We have injected purified, active cyclin A/cyclin-dependent kinase 2 (CDK2) into synchronized cells at specific points in the cell cycle and assayed its effect on cell division. We find that cyclin A/CDK2 will drive G2 phase cells into mitosis within 30 min of microinjection, up to 4 h before control cells enter mitosis. Often this premature mitosis is abnormal; the chromosomes do not completely condense and daughter cells fuse. Remarkably, microinjecting cyclin A/CDK2 into S phase cells has no effect on progress through the following G2 phase or mitosis. In complementary experiments we have microinjected the amino terminus of p21(Cip1/Waf1/Sdi1) (p21N) into cells to inhibit cyclin A/CDK2 activity. We find that p21N will prevent S phase or G2 phase cells from entering mitosis, and will cause early prophase cells to return to interphase. These results suggest that cyclin A/CDK2 is a rate-limiting component required for entry into mitosis, and for progress through mitosis until late prophase. They also suggest that cyclin A/CDK2 may be the target of the recently described prophase checkpoint.  相似文献   

19.
A method is described for quantitative study of the flux of cells through the cell cycle phases in in vitro systems perturbed by chemicals, such as chemotherapeutic agents. The method utilizes cell count and the flow cytometric technique of bromodeoxyuridine (BrdUrd) labeling, according to an optimized strategy. Cells are exposed to BrdUrd during the last minutes of drug treatment and fixed for analysis at 0, 1/3Ts, 2/3Ts, Ts, and Tc + TG1 recovery times, where Ts, TG1, Tc are the mean durations of phases S and G1 and of the whole cycle of control cells. As an example of application of the proposed procedure, a kinetic study of the effect of 1-(2-chloroethyl)-1-nitrosourea (CNU) on the L1210 cell cycle is described. Simple data analysis, requiring only a pocket calculator, showed that cells in phases G1 and G2M at the end of a 1 h treatment with 1 microgram/ml CNU were fully able to leave these phases but were destined to remain blocked in the following G2M phase (G1 for a minority of them). We also found that cells initially in S phase were slightly delayed in completing their S phase and that 50% of them remained temporarily blocked in the subsequent G2M phase, irrespective of their position in the S phase.  相似文献   

20.
The antiproliferative effect of human bcl-2 gene transferred to E1A + c-Ha-ras-transformed rat embryo fibroblasts, which are characterized by the absence of cell cycle checkpoints after damage and by a high proapoptotic sensitivity was studied. Ionizing irradiation, adriamycin treatment, and serum starvation were shown to induce G1/S arrest in E1A + c-Ha-ras-transformants. Bcl-2 antiproliferative effect in E1A + c-Ha-ras-transformants was not associated with alterations in Cdk2, cyclin E and A contents. G1/S arrest following irradiation or serum starvation was accompanied by a decrease in kinase activity associated with cyclin E-cdk2, whereas G1/S arrest in tetraploid subpopulation after adriamycin treatment did not correlate with a decrease in cyclin E-associated kinase activity. Cyclin A-associated kinase activity did not decrease after any used treatment. Transfection of bcl-2 in E1A + c-Ha-ras-transformants resulted in elevated expression of cyclin-cdk complexes inhibitor p21/Waf-1, but not p27/Kip. Damaging agents caused p21/Waf-1 and p27/Kip accumulation, but bcl-2 overexpression did not restore functions of these inhibitors, since p21/Waf-1 and p27/Kip were unable to suppress cyclin-cdk complexes activity after damage. These results suggest that bcl-2 transfection in E1A + c-Ha-ras-transformants is likely to result in irradiation- or serum starvation-induced G1/S arrest accomplished by a selective decrease in cyclin E-associated kinase activity. Adriamycin-induced G1/S arrest seems to be realized via cyclin-cdk complexes activity-independent way involving antiproliferative targets downstream of cyclin E-cdk2 and cyclin A-cdk2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号