共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Liu Y Hernández-Ochoa EO Randall WR Schneider MF 《American journal of physiology. Cell physiology》2012,303(3):C334-C347
Reactive oxygen species (ROS) have been linked to oxidation and nuclear efflux of class IIa histone deacetylase 4 (HDAC4) in cardiac muscle. Here we use HDAC-GFP fusion proteins expressed in isolated adult mouse flexor digitorum brevis muscle fibers to study ROS mediation of HDAC localization in skeletal muscle. H(2)O(2) causes nuclear efflux of HDAC4-GFP or HDAC5-GFP, which is blocked by the ROS scavenger N-acetyl-l-cysteine (NAC). Repetitive stimulation with 100-ms trains at 50 Hz, 2/s ("50-Hz trains") increased ROS production and caused HDAC4-GFP or HDAC5-GFP nuclear efflux. During 50-Hz trains, HDAC5-GFP nuclear efflux was completely blocked by NAC, but HDAC4-GFP nuclear efflux was only partially blocked by NAC and partially blocked by the calcium-dependent protein kinase (CaMK) inhibitor KN-62. Thus, during intense activity both ROS and CaMK play roles in nuclear efflux of HDAC4, but only ROS mediates HDAC5 nuclear efflux. The 10-Hz continuous stimulation did not increase the rate of ROS production and did not cause HDAC5-GFP nuclear efflux but promoted HDAC4-GFP nuclear efflux that was sensitive to KN-62 but not NAC and thus mediated by CaMK but not by ROS. Fibers from NOX2 knockout mice lacked ROS production and ROS-dependent nuclear efflux of HDAC5-GFP or HDAC4-GFP during 50-Hz trains but had unmodified Ca(2+) transients. Our results demonstrate that ROS generated by NOX2 could play important roles in muscle remodeling due to intense muscle activity and that the nuclear effluxes of HDAC4 and HDAC5 are differentially regulated by Ca(2+) and ROS during muscle activity. 相似文献
4.
The roles of ion fluxes in skeletal muscle fatigue 总被引:3,自引:0,他引:3
Intense muscle contractions result in large changes in the intracellular concentrations of electrolytes. The purpose of this study was to examine the contributions of changes in intracellular strong ions to calculated changes in steady-state membrane potential (Em) and muscle intracellular H+ concentration ([H+]i). A physicochemical model is used to examine the origin of the changes in [H+]i during intense muscle contraction. The study used the isolated perfused rat hindlimb intermittently stimulated to contract at high intensity for 5 min. This resulted in significant K+ depletion of both slow (soleus) and fast (white gastrocnemius, WG) muscle fibers and a release of K+ and lactate (Lac-) into venous perfusate. The major contributor to a 12- to 14-mV depolarization of Em in soleus and WG was the decrease in intracellular K+ concentration ([K+]i). The major independent contributors to [H+]i are changes in the concentrations of strong and weak ions and in CO2. Significant decreases in the strong ion difference [( SID]i) in both soleus and WG contributed substantially to the increase in [H+]i during stimulation. In WG the model showed that the decrease in [SID]i accounted for 35% of the increase in [H+]i (133-312 nequiv/L; pHi = 6.88-6.51) at the end of stimulation. Of the main contributors to decreased [SID]i, increased [Lac-]i and decreased [K+]i contributed 40 and 60%, respectively, to increased [H+]i, whereas a decrease in [PCr2-]i contributed to reduced [H+]i. It is concluded that decreased muscle [K+]i during intense contractions is the single most important contributor to reduced Em and increased [H+]i. Depletion of PCr2- simultaneous to the changes in [Lac-]i and [K+]i prevents larger increases in [H+]i and helps maintain the intracellular acid-base state. 相似文献
5.
Monensin-mediated ionic movements were studied in frog skeletal muscle. The ionophore, which forms electrically neutral complexes with monovalent cations, induced dose dependent fluxes of Na+, K+ and H+ in and out of the fibers. Monensin concentrations ([MON]) ranged from 2 to 40 microM. In the presence of normal Ringer's solution the following maximum ionic exchanges were generated by monensin (in pmol cm-2 s-1): (1) Nai+/Nao+ 112, (2) Nai+/Ho+ 30.7, (3) Ki+/Nao+ 14.2 (4) Hi+/Nao+ 49. The maximum net fluxes produced by these exchanges (i.e. for [MON] = infinity) are (in pmol cm-2 s-1): Na+ (inward) 32.5, K+ (outward) 14.2, H+ (outward) 18.3. The last one appears to be largely offset by a passive (monensin-independent) H+ influx down an inwardly directed electrochemical gradient promoted by pH reduction of the T-tubular lumen content as a consequence of the monensin-mediated net H+ efflux. Maximum unidirectional cationic fluxes mediated by monensin amounted to 206 pmol cm-2 s-1 and had the following composition: influx: 85% Na+ and 15% H+; efflux: 69% Na+, 7% K+, 24% H+. 相似文献
6.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle. 相似文献
7.
Regulation of skeletal muscle gene expression by p38 MAP kinases 总被引:7,自引:0,他引:7
8.
Strophanthidin-sensitive sodium fluxes in metabolically poisoned frog skeletal muscle 总被引:2,自引:2,他引:0 下载免费PDF全文
Strophanthidin-sensitive and insensitive unidirectional fluxes of Na were measured in fog sartorius muscles whose internal Na levels were elevated by overnight storage in the cold. ATP levels were lowered, and ADP levels raised, by metabolic poisoning with either 2,4-dinitrofluorobenzene or iodoacetamide. Strophanthidin-sensitive Na efflux and influx both increased after poisoning, while strophanthidin-insensitives fluxes did not. The increase in efflux did not require the presence of external K but was greatly attenuated when Li replaced Na as the major external cation. Membrane potential was not markedly altered by 2,4-dinitrofluorobenzene. These observations indicate that the sodium pump of frog skeletal muscle resembles that of squid giant axon and human erythrocyte in its ability to catalyze Na-Na exchange to an extent determined by intracellular ATP/ADP levels. 相似文献
9.
10.
11.
12.
Jieyu Ren Qun Zeng Hongmei Wu Xuewen Liu Maria C. Guida Wen Huang Yiyuan Zhai Junjie Li Karen Ocorr Rolf Bodmer Min Tang 《Journal of cellular physiology》2023,238(3):647-658
Cardiomyopathy is a common disease of cardiac muscle that negatively affects cardiac function. HDAC3 commonly functions as corepressor by removing acetyl moieties from histone tails. However, a deacetylase-independent role of HDAC3 has also been described. Cardiac deletion of HDAC3 causes reduced cardiac contractility accompanied by lipid accumulation, but the molecular function of HDAC3 in cardiomyopathy remains unknown. We have used powerful genetic tools in Drosophila to investigate the enzymatic and nonenzymatic roles of HDAC3 in cardiomyopathy. Using the Drosophila heart model, we showed that cardiac-specific HDAC3 knockdown (KD) leads to prolonged systoles and reduced cardiac contractility. Immunohistochemistry revealed structural abnormalities characterized by myofiber disruption in HDAC3 KD hearts. Cardiac-specific HDAC3 KD showed increased levels of whole-body triglycerides and increased fibrosis. The introduction of deacetylase-dead HDAC3 mutant in HDAC3 KD background showed comparable results with wild-type HDAC3 in aspects of contractility and Pericardin deposition. However, deacetylase-dead HDAC3 mutants failed to improve triglyceride accumulation. Our data indicate that HDAC3 plays a deacetylase-independent role in maintaining cardiac contractility and preventing Pericardin deposition as well as a deacetylase-dependent role to maintain triglyceride homeostasis. 相似文献
13.
14.
Integrin on developing and adult skeletal muscle 总被引:13,自引:0,他引:13
Avian integrin is a complex of integral membrane glycoproteins that appears to function as a dual receptors for both intracellular cytoskeletal and extracellular matrix components. Antibodies were raised against this complex and used to (1) immunolocalize integrin on cryosections of developing and adult muscle tissue and on developing myotube cultures in vitro and (2) immunoaffinity purify integrin from various fiber-type specific muscles. Integrin localization was compared with that of its putative cytoskeletal-associated and extracellular matrix ligands, talin and vinculin and fibronectin and laminin, respectively. The goal was to identify putative sites of interaction between the muscle sarcolemma and the cytoskeleton and the extracellular matrix and to reveal any differences in the molecular composition at these sites. Integrin's distribution on the sarcolemma of early (Day 12) embryonic limb muscle was random and punctate. On late embryonic (Days 17-19) limb muscle tissue its distribution was generally uniform but with occasional increased densities at specific sites along the sarcolemma. Posthatch (greater than 3 weeks) fast twitch muscle showed a highly regionalized distribution. These regions of integrin concentration coincided with densities of acetylcholine receptors, revealed by TRITC alpha-bungarotoxin labeling, and regions of muscle-tendon interaction, identified by morphological criteria. Tissue culture studies also demonstrated integrin densities at analogous sites in vitro, e.g., acetylcholine receptor clusters and sites at which myofibrils terminate at the sarcolemma. These integrin-rich sites were also shown to be Triton X-100 insoluble and therefore presumably are linked to the cytoskeleton or extracellular matrix. The localization of integrin on developing and adult muscle tissue was compared with that of fibronectin, laminin, vinculin, and talin using double, immunofluorescently labeled cryosections. In general, integrin did not colocalize exclusively with any one of its putative ligands. In the embryo, discrete densities of both talin and vinculin were observed at the myotendinous junction, whereas integrin immunoreactivity was widely distributed on muscle, vasculature, nerve, and connective tissue with no discernible sites of increased density. Laminin was primarily associated with muscle and nerve whereas fibronectin was prominent on connective tissue. On posthatch tissue, the distributions of talin, vinculin, laminin, and fibronectin were similar to those in the embryo, whereas the distribution of integrin was restricted to specific sites. The distribution of integrin was also examined for fiber-type specific differences on adu 相似文献
15.
Differential localization of HDAC4 orchestrates muscle differentiation 总被引:11,自引:0,他引:11
Miska EA Langley E Wolf D Karlsson C Pines J Kouzarides T 《Nucleic acids research》2001,29(16):3439-3447
16.
17.
18.
The purified creatine kinase MM of porcine skeletal muscle [Takasawa, T. & Shiokawa, H. (1981) J. Biochem. 90, 195-204] was separated into three distinct fractions by isoelectric focusing (IEF) in a sucrose gradient column, and the three active fractions were isolated by repeated IEF. There were one major fraction with isoelectric point (pI) 6.57 and two minor fractions with pI 6.74 and pI 6.34, respectively. No differences were observed in the IEF pattern of the enzyme in the presence and absence of dithiothreitol throughout the column. There was no interconversion from one form to another during IEF. The distribution of the three forms on IEF was not affected by adding protease inhibitor to the extraction medium. Of the three fractions, the major fraction had the highest specific activity. The three fractions differed from one another in their amino acid compositions. Not only porcine muscle but also rabbit muscle creatine kinase displayed this type of heterogeneity. Such microheterogeneities may occur widely in muscle creatine kinases. 相似文献
19.
The properties of three fractions (FI, FII, and FIII) of porcine creatine kinase MM, which have been isolated by isoelectric focusing, were compared. Sugars were not detected in them. Their carboxyl-terminal sequences were identical and were determined to be -Thr-Lys by digestion with carboxypeptidases A and B. Immunodiffusion and competitive radioimmunoassay could not differentiate the three fractions from one another. Their amino-terminal sequences revealed that they had different primary structures. At residue 1, although all the three fractions had Pro, FI and FIII had an additional amino acid, Ser. At residue 23, only FI had Leu in addition to Ser, the amino acid common to the three fractions. These results indicate that differences among the three fractions of porcine creatine kinase MM are based on differences in the primary structures of the subunits in their dimer structures, and confirm the conclusion that FII is a homodimer and FI and FIII are heterodimers, which was reported in the preceding paper [Takasawa, T. & Shiokawa, H. (1983) J. Biochem. 93, 383-388]. 相似文献
20.
Mammalian skeletal muscle myosin light chain kinases. A comparison by antiserum cross-reactivity 总被引:1,自引:0,他引:1
Purified myosin light chain kinases from skeletal muscle are reported to be significantly smaller (Mr = 75,000-90,000) than the kinases purified from smooth muscle (Mr = 130,000-155,000). It has been suggested that the smaller kinases from striated muscle are proteolytic fragments of a larger enzyme which is homologous, if not identical, to myosin light chain kinase from smooth muscle. Therefore, we have used an antiserum to rabbit skeletal muscle myosin light chain kinase and Western blot analysis to compare the subunit molecular weight of the kinase in skeletal muscle extracts of several mammalian species. In rabbit skeletal muscle, the antiserum only recognized a polypeptide of Mr = 87,000, with no indication that this polypeptide was a proteolyzed fragment of a larger protein. The apparent molecular weights observed in different animal species were 75,000 (mouse), 83,000 (guinea pig), 82,000 (rat), 87,000 (rabbit), 100,000 (dog), and 108,000 (steer). The molecular weight of myosin light chain kinase was constant within an animal species, regardless of skeletal muscle fiber type. The antiserum inhibited the catalytic activity of skeletal muscle myosin light chain kinase. Similar antibody dilution curves for inhibition of myosin light chain kinase activity in extracts were observed for all animal species (rabbit, rat, mouse, guinea pig, dog, cat, steer, and chicken) and different fibers (slow twitch oxidative, fast twitch oxidative glycolytic, and fast twitch glycolytic) tested. The antiserum did not inhibit the activity of rabbit smooth muscle myosin light chain kinase. These results suggest that there may be at least two classes of muscle myosin light chain kinase represented in skeletal and smooth muscles, respectively. 相似文献