首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of muscle metabolic characteristics on physical performance   总被引:1,自引:0,他引:1  
This study describes the influence of muscle fiber type composition, enzyme activities and capillary supply on muscle strength, local muscle endurance or aerobic power and capacity. Muscle biopsies were obtained from m. vastus lateralis in thirteen physically active men. Histochemical staining procedures were applied to assess the percentage of fast twitch (FT) fibers, muscle fiber area, and capillary density. Also, the activity of citrate synthase (CS), creatine kinase (CK), hexokinase (HK), lactate dehydrogenase (LDH), and phosphofructokinase (PFK) were analysed using fluorometrical assays. Peak torque at 'low' and 'high' angular velocities was measured during leg extension. Similarly, muscle fatigue (e.g. peak torque decline) and recovery from a short-term exercise task were measured during maximal, voluntary consecutive leg extensions. Aerobic power (VO2max) and aerobic capacity (e.g. onset of blood lactate concentration; OBLA), as defined by a blood lactate concentration of 4 mol X 1(-1) were measured during cycling. Peak torque at a high angular velocity was positively correlated with % FT area (p less than 0.001). Fatigue and recovery were correlated with LDH X CS-1 (p less than 0.001). WOBLA was best correlated with PFK and PFK X CS-1 (p less than 0.001). Hence, muscle strength was partly determined by fiber type composition whereas local muscle endurance, recovery and aerobic capacity reflect mainly capillary supply and the activity of key enzymes involved in aerobic and anaerobic metabolism.  相似文献   

2.
Percutaneous muscle biopsies were obtained from the vastus lateralis of physically active men (n = 12) 1) at rest, 2) immediately after an exercise bout consisting of 30 maximal voluntary knee extensions of constant angular velocity (3.14 rad/s), and 3) 60 s after termination of exercise. Creatine phosphate (CP) content was analyzed in pools of freeze-dried fast-twitch (FT) and slow-twitch (ST) muscle fiber fragments, and ATP, CP, creatine, and lactate content were assayed in mixed pools of FT and ST fibers. CP content at rest was 82.7 +/- 11.2 and 73.1 +/- 9.5 (SD) mmol/kg dry wt in FT and ST fibers (P less than 0.05). After exercise the corresponding values were 25.4 +/- 19.8 and 29.7 +/- 14.4 mmol/kg dry wt. After 60 s of recovery CP increased (P less than 0.01) to 41.3 +/- 12.6 and 49.6 +/- 11.7 mmol/kg dry wt in FT and ST fibers, respectively. CP content after recovery, relative to initial level, was higher in ST compared with FT fibers (P less than 0.05). ATP content decreased (P less than 0.05) and lactate content rose to 67.4 +/- 28.3 mmol/kg dry wt (P less than 0.001) in response to exercise. It is concluded that basal CP content is higher in FT fibers than in ST fibers. CP content also appears to be higher in ST fibers after a 60-s recovery period after maximal short-term exercise. These data are consistent with the different metabolic profiles of FT and ST fibers.  相似文献   

3.
Muscle hypertrophy in bodybuilders   总被引:4,自引:0,他引:4  
Muscle biopsy samples were obtained from m. vastus lateralis and m. deltoideus of three high caliber bodybuilders. Tissue specimens were analysed with respect to relative distribution of fast twitch (FT) and slow twitch (ST) fiber types and different indices of fiber area. In comparison to a reference group of competitive power/weight-lifters the following tendencies were observed: the percentage of FT fibers was less, mean fiber area was smaller and selective FT fiber hypertrophy was not evident. Values for fiber type composition and fiber size were more similar to values reported for physical education students and non-strength trained individuals. The results suggest that weight training induced muscle hypertrophy may be regulated by different mechanisms depending upon the volume and intensity of exercise.  相似文献   

4.
Muscle force recovery from short term intense exercise was examined in 16 physically active men. They performed 50 consecutive maximal voluntary knee extensions. Following a 40-s rest period five additional maximal contractions were executed. The decrease in torque during the 50 contractions and the peak torque during the five contractions relative to initial torque were used as indices for fatigue and recovery, respectively. Venous blood samples were collected repeatedly up to 8 min post exercise for subsequent lactate analyses. Muscle biopsies were obtained from m. vastus lateralis and analysed for fiber type composition, fiber area, and capillary density. Peak torque decreased 67 (range 47-82%) as a result of the repeated contractions. Following recovery, peak torque averaged 70 (47-86%) of the initial value. Lactate concentration after the 50 contractions was 2.9 +/- 1.3 mmol X 1(-1) and the peak post exercise value averaged 8.7 +/- 2.1 mmol X 1(-1). Fatigue and recovery respectively were correlated with capillary density (r = -0.71 and 0.69) but not with fiber type distribution. A relationship was demonstrated between capillary density and post exercise/peak post exercise blood lactate concentration (r = 0.64). Based on the present findings it is suggested that lactate elimination from the exercising muscle is partly dependent upon the capillary supply and subsequently influences the rate of muscle force recovery.  相似文献   

5.
Six healthy men performed sustained static handgrip exercise for 2 min at 40% maximal voluntary contraction followed by a 6-min recovery period. Heart rate (fc), arterial blood pressures, and forearm blood flow were measured during rest, exercise, and recovery. Potassium ([K+]) and lactate concentrations in blood from a deep forearm vein were analysed at rest and during recovery. Mean arterial pressure (MAP) and fc declined immediately after exercise and had returned to control levels about 2 min into recovery. The time course of the changes in MAP observed during recovery closely paralleled the changes in [K+] (r = 0.800, P < 0.01), whereas the lactate concentration remained elevated throughout the recovery period. The close relationship between MAP and [K+] was also confirmed by experiments in which a 3-min arterial occlusion period was applied during recovery to the exercised arm by an upper arm cuff. The arterial occlusion affected MAP while fc recovered at almost the same rate as in the control experiment. Muscle biopsies were taken from the brachioradialis muscle and analysed for fibre composition and capillary supply. The MAP at the end of static contraction and the [K+] appearing in the effluent blood immediately after contraction were positively correlated to the relative content of fast twitch (% FT) fibres (r = 0.886 for MAP vs % FT fibres, P < 0.05 and r = 0.878 for [K+] vs % FT fibres, P < 0.05). Capillary to fibre ratio showed an inverse correlation to % FT fibres (r = -0.979, P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The purpose of this study was to examine the effects of diverting activities on recovery from fatiguing concentric isokinetic muscle actions. On 3 separate occasions, 11 men (mean ± SD age = 22.2 ± 1.5 years) and 8 women (mean ± SD age = 22.2 ± 2.1 years) performed 2 bouts of 50 consecutive maximal concentric isokinetic muscle actions of the dominant leg extensors. Between these bouts, the subjects either performed math problems (mental diverting activity), contralateral dynamic constant external resistance (DCER) leg extensions (physical diverting activity), or rested quietly (control). For each trial, the peak torque data from the first and second bouts of 50 muscle actions served as the pretest (Pre) and posttest (Post) data, respectively. The results indicated that when the subjects rested quietly or performed contralateral DCER leg extensions between the fatiguing bouts, the initial peak torque values observed for Post were significantly less than those for Pre. When the subjects performed math problems, however, no decline in the initial peak torque values was observed, thus indicating better recovery. In addition, a decline in the average torque values was observed from Pre to Post for the control trial but not for the math problem or contralateral exercise trials. No differences were observed among the trials for final peak torque, percent decline, or the linear slope of the decline in peak torque. These findings demonstrated that performing either mental or physical diverting activities after fatiguing isokinetic muscle actions enhanced recovery.  相似文献   

7.
A double-blind randomized study was performed to evaluate the effect of oral ribose supplementation on repeated maximal exercise and ATP recovery after intermittent maximal muscle contractions. Muscle power output was measured during dynamic knee extensions with the right leg on an isokinetic dynamometer before (pretest) and after (posttest) a 6-day training period in conjunction with ribose (R, 4 doses/day at 4 g/dose, n = 10) or placebo (P, n = 9) intake. The exercise protocol consisted of two bouts (A and B) of maximal contractions, separated by 15 s of rest. Bouts A and B consisted of 15 series of 12 contractions each, separated by a 60-min rest period. During the training period, the subjects performed the same exercise protocol twice per day, with 3-5 h of rest between exercise sessions. Blood samples were collected before and after bouts A and B and 24 h after bout B. Knee-extension power outputs were approximately 10% higher in the posttest than in the pretest but were similar between P and R for all contraction series. The exercise increased blood lactate and plasma ammonia concentrations (P < 0.05), with no significant differences between P and R at any time. After a 6-wk washout period, in a subgroup of subjects (n = 8), needle-biopsy samples were taken from the vastus lateralis before, immediately after, and 24 h after an exercise bout similar to the pretest. ATP and total adenine nucleotide content were decreased by approximately 25 and 20% immediately after and 24 h after exercise in P and R. Oral ribose supplementation with 4-g doses four times a day does not beneficially impact on postexercise muscle ATP recovery and maximal intermittent exercise performance.  相似文献   

8.
Fibre conduction velocity and fibre composition in human vastus lateralis   总被引:6,自引:0,他引:6  
The relationship between muscle fibre composition and fibre conduction velocity was investigated in 19 male track athletes, 12 sprinters and 7 distance runners, aged 20-24 years, using needle biopsy samples from vastus lateralis. Cross sectional areas of the fast twitch (FT) and slow twitch (ST) fibres were determined by histochemical analysis. The percentage of FT fibre areas ranged from 22.6 to 93.6%. Sprinters had a higher percentage of FT fibres than distance runners. Muscle fibre conduction velocity was measured with a surface electrode array placed along the muscle fibres, and calculated from the time delay between 2 myoelectric signals recorded during a maximal voluntary contraction. The conduction velocity ranged from 4.13 to 5.20 m.s-1. A linear correlation between conduction velocity and the relative area of FT fibres was statistically significant (r = 0.84, p less than 0.01). This correlation indicates that muscle fibre composition can be estimated from muscle fibre conduction velocity measured noninvasively with surface electrodes.  相似文献   

9.
Twitch potentiation was studied in the human triceps surae complex before and after intermittent maximal voluntary contractions or electrical stimulation at 20 Hz. Both forms of exercise were conducted with intact circulation for a maximum of 10 min or with circulatory occlusion until force output declined 50%. The relative potentiation was determined when a control twitch was compared to a twitch obtained after 5 s of maximal voluntary plantar flexion. The unpotentiated twitch torque (PT) and potentiated twitch torque (PT*) were reduced most severely after voluntary ischemic exercise (63.2% and 52.5% respectively, (P less than 0.001)). However, the relative potentiation (PT*/PT) immediately after voluntary ischemic exercise increased to 1.65 +/- 0.18 from 1.22 +/- 0.13 at rest. Both PT and PT* recovered quickly after exercise. At rest, twitch contraction time (CT) and one-half relaxation time (1/2 RT) in the unpotentiated twitch were longer than that of contraction (CT*) and one-half relaxation time (1/2 RT*) in the potentiated twitch. Following non-occluded exercise, CT, CT*, 1/2 RT and 1/2 RT* were shortened relative to rest. After ischemic exercise CT and CT* were shortened although 1/2 RT and 1/2 RT* increased relative to rest. Both CT* and 1/2 RT* quickly recovered to pre-exercise values by 5 min post-exercise. Ratios of potentiated/control twitch parameters were not altered after nonoccluded exercise, but were increased after ischemic exercise. These results suggest that the mechanisms of fatigue which depress voluntary torque and twitch and potentiated twitch torques, do not interfere with the extent of potentiation after fatiguing exercise.  相似文献   

10.
Twitch potentiation was studied during a fatigue paradigm involving intermittent maximum voluntary contractions (MVCs) of the tibialis anterior muscle in the elderly and in young adults. Resting twitch torques were similar between groups, but twitch potentiation was significantly greater (241% vs 166%) in the young; the recovery of the twitch after fatigue was similar between groups. Contraction time, time to peak torque and half-relaxation time were all significantly slower in the elderly. Following 12 weeks of resistance training in the elderly, there was no significant change in the twitch contractile properties at rest, but there was a significant main effect of training on the degree of twitch potentiation during the same fatigue protocol (peak potentiation 192% post-training vs 165% pretraining). These data suggest that the mechanism(s) responsible for twitch potentiation following MVCs may be influenced by both aging and training.  相似文献   

11.
We aimed to determine whether there were differences in the extent and time course of skeletal muscle myofibrillar protein synthesis (MPS) and muscle collagen protein synthesis (CPS) in human skeletal muscle in an 8.5-h period after bouts of maximal muscle shortening (SC; average peak torque = 225 +/- 7 N.m, means +/- SE) or lengthening contractions (LC; average peak torque = 299 +/- 18 N.m) with equivalent work performed in each mode. Eight healthy young men (21.9 +/- 0.6 yr, body mass index 24.9 +/- 1.3 kg/m2) performed 6 sets of 10 maximal unilateral LC of the knee extensors on an isokinetic dynamometer. With the contralateral leg, they then performed 6 sets of maximal unilateral SC with work matched to the total work performed during LC (10.9 +/- 0.7 vs. 10.9 +/- 0.8 kJ, P = 0.83). After exercise, the participants consumed small intermittent meals to provide 0.1 g.kg(-1).h(-1) of protein and carbohydrate. Prior exercise elevated MPS above rest in both conditions, but there was a more rapid rise after LC (P < 0.01). The increases (P < 0.001) in CPS above rest were identical for both SC and LC and likely represent a remodeling of the myofibrillar basement membrane. Therefore, a more rapid rise in MPS after maximal LC could translate into greater protein accretion and muscle hypertrophy during chronic resistance training utilizing maximal LC.  相似文献   

12.
The present study was undertaken to assess the relationship between the mechanical power developed during new anaerobic power test and muscular fiber distribution. Ten track and field male athletes were used as subjects, whose muscle fiber composition (m. vastus lateralis) varied from 25 to 58 fast twitch (FT) fibers. The test consisted of measuring the flight time with a special timer during 60 s continuous jumping. A formula was derived to allow the calculation of mechanical power during a certain period of time (e.g., in the present study every 15 s during 60 s of jumping performance). The relationship between the mechanical power for the first 15 s period correlated best with fast twitch (FT) fiber distribution (r = 0.86, p less than 0.005). However, the power output during the successive 15 s periods demonstrated lower correlation with FT, and this relationship became statistically non-significant after 30 s of work. The sensitivity to fatigue of the test was supported by the relationship observed between the decrease of power during 60 s jumping performance and the percentage of FT fibers (r = 0.73, p less than 0.01). Thus, the present findings suggest that muscular performance, as determined by the new jumping test, is influenced by skeletal muscle fiber composition. The new test, which primarily evaluates maximal short term muscular power, also proved sensitive in assessing fatigue patterns during 60 s of strenuous work.  相似文献   

13.
The aim of this study was to test the hypothesis that the repeated bout effect depends on intraindividual variability during a second bout of eccentric exercise. Eleven healthy men performed 2 resistance training bouts consisting of maximal eccentric exercise (EE1 and EE2) using the knee extensor muscles. The interval between the exercise bouts was 2 weeks and consisted of 10 sets of 12 repetitions at 160° · s(-1). Maximal isokinetic concentric torque at 30° · s(-1) was measured before the bouts and 2 minutes and 24 hours thereafter. Muscle soreness score and creatine kinase activity were determined before and after exercise. Intraindividual variability in torque during each eccentric repetition was measured during exercise. Repeated bout effect manifested after EE2: Muscle soreness was less, the shift in optimal knee joint angle to a longer muscle length was less, and the decrease in isokinetic concentric torque 2 minutes after exercise was less for EE2 compared with that for EE1. During concentric (isokinetic) contraction, length-dependent changes in isokinetic torque (IT) occurred after both EE1 and EE2: The shorter the muscle length, the greater the change in IT. There was a significant relationship between the decrease in maximal isokinetic knee extension torque 24 hours after EE1 and intraindividual variability of EE1 (R2 = 0.71, p < 0.05), but this relationship was not significant for EE2 (R2 = 0.18). It seems that intraindividual variability during eccentric exercise protects against muscle fatigue and damage during the first exercise bout but not during a repeat bout. These findings may be useful to coaches who wish to improve muscle function in resistance training with less depression in muscle function and discomfort of their athletes, specifically, when muscle is most sensitive to muscle-damaging exercise.  相似文献   

14.
A method for measuring the maximal velocity of knee extension exercise is described using a very light lever arm. Instrumentation of the lever arm with a potentiometer and accelerometer also allows for the measurement of peak acceleration, time to peak acceleration, the average rate of development of acceleration (jerk) and peak torque. With this apparatus and surface electromyography, electromechanical delay (EMD) was also determined. This apparatus was tested using 17 female and 10 male subjects, and the measures obtained were related to the percentage of fast twitch fibres (% FT) and the relative area of fast twitch fibres (% FTA) in the vastus lateralis determined from duplicate muscle biopsy samples. Peak velocity of unloaded knee extension averaged 12.1 +/- 1.2 and 12.2 +/- 1.7 rad.s-1 for females and males, respectively, and were not significantly different. As well, peak acceleration, time to peak acceleration jerk and EMD values were not significantly different between the female and male subjects, but the mean peak torque for the female subjects (73.5 +/- 14.7 N.m) was significantly lower than that for the males (98.4 +/- 31.5 N.m). Peak acceleration was significantly correlated with %FT (r = 0.40, P = 0.04) for the total subject population. None of the other measures was significantly related to either %FT or %FTA for the male and female subjects or the combined population of subjects.  相似文献   

15.
CK and LD isozymes in human single muscle fibers in trained athletes   总被引:1,自引:0,他引:1  
Individual human muscle fibers from the vastus lateralis were isolated from age-matched endurance-trained and strength-trained athletes and untrained controls. Slow- (ST) and fast-twitch (FT) fibers were assayed for total creatine kinase (CK), CK-MB, total lactate dehydrogenase (LD), the LD isozyme that predominates in the heart muscle of most vertebrates (LD1), and citrate synthase (CS). Regardless of training of the athletes, both CK-MB and CS were higher in ST than in FT fibers. Also, irrespective of fiber type, CK-MB and CS were greatest in the endurance-trained group. A positive correlation existed between CK-MB and CS, relating oxidative capacity of individual fibers with CK-MB. Total CK varied little among the fiber types, trained groups, or controls. Total LD in FT fibers was greater than in ST fibers in all groups, with only ST fibers from the endurance-trained group containing substantial amounts of LD1. These findings suggest that specific training, endurance exercise, causes a favorable metabolic adaptation of CK and LD isozymes at the individual fiber level, allowing for the muscle to cope with increased energy demands during prolonged exercise.  相似文献   

16.
17.
Lactate dehydrogenase (LDH) activity was histochemically localized in fibers of the vastus lateralis muscle of men and for comparative purpose in the soleus and plantaris muscleo of rats. Human muscle fibers were identified as fast twitch (FT) or slow twitch (ST) from the histochemical stain for myofibrillar adenosine triphosphatase activity. Rat skeletal muscle fibers were classified as fast-twitch-oxidative-glycolytic (FOG), fast-twitch-glycolytic (FG), or slow-twitch-oxidative (SO) on the basis of NADH-diaphorase and myofibrillar adenosine triphosphatase activities. Heart-type (H) LDH was identified by inhibition of the muscle-type (M) isozyme with 4 M urea. Total LDH as estimated histochemically was highest in the human FT and rat FG fibers. This was predominantly the M-LDH isozyme. ST fibers of human and SO fibers of rat skeletal muscle had the least total LDH but the most H-LDH activity. The FOG fibers of rat muscle contained a total LDH activity intermediate to that of the FG and SO fibers and a combination of H- and M-LDH. There were no fibers in the human muscle samples studied that had LDH activities similar to the FOG fibers of rat muscle.  相似文献   

18.
Previously, the decline in glycemia in individuals with type 1 diabetes has been shown to be less with intermittent high-intensity exercise (IHE) compared with continuous moderate-intensity exercise (MOD) despite the performance of a greater amount of total work. The purpose of the present study was to determine whether this lesser decline in glycemia can be attributed to a greater increment in endogenous glucose production (Ra) or attenuated glucose utilization (Rd). Nine individuals with type 1 diabetes were tested on two separate occasions, during which either a 30-min MOD or IHE protocol was performed under conditions of a euglycemic clamp in combination with the infusion of [6,6-(2)H]glucose. MOD consisted of continuous cycling at 40% VO2 peak, whereas IHE involved a combination of continuous exercise at 40% VO2 peak interspersed with additional 4-s maximal sprint efforts performed every 2 min to simulate the activity patterns of intermittent sports. During IHE, glucose Ra increased earlier and to a greater extent compared with MOD. Similarly, glucose Rd increased sooner during IHE, but the increase by the end of exercise was comparable with that elicited by MOD. During early recovery from IHE, Rd rapidly declined, whereas it remained elevated after MOD, a finding consistent with a lower glucose infusion rate during early recovery from IHE compared with MOD (P<0.05). The results suggest that the lesser decline in glycemia with IHE may be attributed to a greater increment in Ra during exercise and attenuated Rd during exercise and early recovery.  相似文献   

19.
Indices of electrically stimulated and maximal voluntary isometric muscle torgue and the phosphate content of myosin phosphorylatable light chains (P light chains) were studied during recovery following a 60-s maximal voluntary isometric contraction (MVC) in 21 human subjects. Analysis of muscle biopsy samples revealed that immediately after the 60-s MVC there were significant decreases in ATP (-15%) and phosphocreatine (-82%), and lactate concentration increased by 17-fold. All indices of muscle torque production were reduced by the 60-s MVC, but the twitch torque and torque at 10 Hz were relatively less reduced compared with the torque at 20 and 50 Hz or a 1-s MVC. Between 3 and 6 min of recovery, twitch torque and torque at 10 Hz stimulation were significantly potentiated, reaching peak values of 125 and 134%, respectively, compared with rest. Phosphate content of the fast and two slow P light chains was significantly increased over rest levels immediately after and 4 min after the 60-s MVC. These results suggest that myosin P light-chain phosphorylation could provide a mechanism to increase human muscle torque under conditions of submaximal contractile element activation following fatigue.  相似文献   

20.
Pulsatile properties of luteinizing hormone (LH) and growth hormone (GH) release were evaluated in 19 eumenorrheic untrained females [mean age 31.1 +/- 1.1 yr, height 165.2 +/- 1.4 cm, weight 64.8 +/- 2.1 kg, peak oxygen uptake (Vo2) 41.6 +/- 1.4 (SE) ml.kg-1.min-1] during the early follicular phase of the menstrual cycle (days 3-4 after the onset of menses). Each subject was studied during two consecutive menstrual cycles under each of two conditions in random order: 1) no formal exercise for 72 h (C) and 2) 12-24 h after two maximal exercise bouts (peak Vo2/lactate threshold treadmill evaluation and a 3,200-m time-trial run or a maximal Vo2 inclined treadmill test) performed on consecutive days (EX). Blood sampling was performed every 10 min for 12 h. LH and GH pulsatile parameters were identified and characterized by the Cluster pulse detection algorithm. No significant differences were noted in the number of peaks, peak amplitude, interpeak interval, peak increment, or 12-h integrated concentrations between C and EX for LH or GH. We conclude that maximal exercise protocols typically used for exercise evaluation do not have an effect on the pulsatile characteristics of LH or GH release in untrained women during the early follicular phase of the menstrual cycle if 12-24 h of recovery are allowed before evaluation of the pulsatile secretion of gonadotropins or GH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号