首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Telomerase, the enzyme that extends single-stranded telomeric DNA, consists of an RNA subunit (TER) including a short template sequence, a catalytic protein (TERT) and accessory proteins. We used site-specific UV cross-linking to map the binding sites for DNA primers in TER within active Tetrahymena telomerase holoenzyme complexes. The mapping was performed at single-nucleotide resolution by a novel technique based on RNase H digestion of RNA-DNA hybrids made with overlapping complementary oligodeoxynucleotides. These data allowed tracing of the DNA path through the telomerase complexes from the template to the TERT binding element (TBE) region of TER. TBE is known to bind TERT and to be involved in the template 5'-boundary definition. Based on these findings, we propose that upstream sequences of each growing telomeric DNA chain are involved in regulation of its growth arrest at the 5'-end of the RNA template. The upstream DNA-TBE interaction may also function as an anchor for the subsequent realignment of the 3'-end of the DNA with the 3'-end of the template to enable initiation of synthesis of a new telomeric repeat.  相似文献   

3.
4.
5.
6.
7.
8.
Telomerase contains two essential components: an RNA molecule that templates telomeric repeat synthesis and a catalytic protein component. Human telomerase is processive, while the mouse enzyme has much lower processivity. We have identified nucleotide determinants in the telomerase RNA that are responsible for this difference in processivity. Mutations adjacent to the template region of human and mouse telomerase RNA significantly altered telomerase processivity both in vitro and in vivo. We also identified functionally important nucleotides in the pseudoknot domain of telomerase RNA that potentially mediate the incompatibility between human TERT and mouse telomerase RNA. These experiments identify essential residues of the telomerase RNA that regulate telomerase activity and processivity.  相似文献   

9.
10.
Telomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation. Employing a template-free human telomerase system, we demonstrate that the telomerase active site directly binds to RNA/DNA hybrid substrates for DNA polymerization. In telomerase processivity mutants, the template-translocation efficiency correlates with the affinity for the RNA/DNA hybrid substrate. Furthermore, the active site is unoccupied during template translocation as a 5 bp extrinsic RNA/DNA hybrid effectively reduces the processivity of the template-containing telomerase. This suggests that strand separation and template realignment occur outside the active site, preceding the binding of realigned hybrid to the active site. Our results provide new insights into the ancient RNA/DNA hybrid binding ability of telomerase and its role in template translocation.  相似文献   

11.
12.
13.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

14.
15.
16.
17.
18.
19.
20.
K Collins  C W Greider 《The EMBO journal》1995,14(21):5422-5432
Telomerase is a ribonucleoprotein (RNP) DNA polymerase involved in telomere synthesis. A short sequence within the telomerase RNA component provides a template for de novo addition of the G-rich strand of a telomeric simple sequence repeat onto chromosome termini. In vitro, telomerase can elongate single-stranded DNA primers processively: one primer can be extended by multiple rounds of template copying before product dissociation. Telomerase will incorporate dNTPs or ddNTPs and will elongate any G-rich, single-stranded primer DNA. In this report, we show that Tetrahymena telomerase was able to incorporate a ribonucleotide, rGTP, into product polynucleotide. Synthesis of the product [d(TT)r(GGGG)]n was processive, suggesting that the chimeric product remained associated with the enzyme both at the active site and at a second, previously characterized, template-independent product binding site. As predicted by this finding, RNA-containing oligonucleotides served as primers for elongation. More than 3 nt of RNA at a primer 3' end decreased the quantity of product synthesis but increased the affinity of the primer for telomerase. Thus, RNA-containing primers were effective as competitive inhibitors of DNA primer elongation by telomerase. These results support the possible evolutionary origin of telomerase as an RNA-dependent RNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号