首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
With an increased influx of Ca2+ in the cytoplasm, the response of cells to ADH in the urinary bladder of the frog was lowered by addition of ionophore A23187 from the side of the basolateral cell membrane, but inhibited when it was added from the apical cell membrane. The removal of calcium by EGTA from the serosal surface was accompanied by a sharp increase of osmotic permeability not only to water, but also to inulin; while when calcium was removed from the mucosal surface of the urinary bladder, osmotic permeability was not changed. After being added to the Ringer solution from the outer surface of the apical cell membrane, the inhibitors of Ca2+ channels (verapamil, Ni2+, Mn2+, Co2+) decreased the effect of ADH. These data indicate that Ca2+ applied onto the outer surface of apical plasma membrane plays an important role in the action of ADH.  相似文献   

2.
Recent studies show that ADH-stimulated water flow across toad bladder may be regulated at a site other than the luminal membrane. In these studies luminal membrane particle aggregate frequency has been used as a measure of luminal membrane water permeability. In fully stretched bladders the relationship between total tissue permeability and aggregate frequency is curvilinear, rather than linear. This implies a resistance in series with the luminal membrane that can become rate-limiting for water flow during ADH stimulation. The possibility that transtissue water movement is actually regulated at such a post-luminal membrane resistance is suggested by the finding that within 30 min following exposure to hormone, water flow becomes attenuated without any change in aggregate frequency. Supporting this possibility, recent data from follow-up studies suggest that the apparent water permeability per luminal membrane aggregate is not reduced with time. Finally, for bladders in which prostaglandin synthesis is inhibited (by naproxen), increases in both base-line water flow and water flow consequent to treatment with a submaximal dose of ADH (0.125 mU/ml), are much less than expected from simultaneously observed changes in luminal membrane aggregate frequency. In parallel experiments to these, moreover, direct measurements of luminal membrane water permeability from the rate of change of cell volume consequent to a transluminal membrane osmotic challenge, confirm that luminal membrane water permeability increases to the extent expected from changes in aggregate frequency. All of the data taken together argue for a post-luminal membrane barrier in toad bladder which regulates tissue permeability during ADH stimulation.  相似文献   

3.
Summary The present study investigated whether the hydrophobic properties (wettability) of the luminal surface of the toad urinary bladder might play a role in modulating water transport across this epithelium. In the absence of vasopressin (ADH), water transport across the tissue was low, while luminal surface hydrophobicity (water contact angle) was relatively high. Following stimulation by ADH, water transport increased and surface hydrophobicity decreased. The addition of indomethacin to inhibit ADH-induced prostaglandin synthesis did not reduce these actions of ADH. In an attempt to alter water transport in this tissue, a liposomal suspension of surface-active phospholipids was administered to the luminal surface. This addition had no detectable influence on the low basal rates of water transport, but blocked the ADH-induced stimulation of water transport. We suggest that surface-active phospholipids on the toad bladder luminal membrane may contribute to the hydrophobic characteristics of this tissue. ADH may act to decrease surface hydrophobicity, facilitating the movement of water molecules across an otherwise impermeable epithelium. This surface alteration may be associated with the appearance of water channels in the apical membrane.  相似文献   

4.
Antidiuretic hormone (ADH) induces a large increase in the water permeability of the luminal membrane of toad urinary bladder. Measured values of the diffusional water permeability coefficient, Pd(w), are spuriously low, however, because of barriers within the tissue, in series with the luminal membrane, that impede diffusion. We have now determined the water permeability coefficient of these series barriers in fully stretched bladders and find it to be approximately 6.3 X 10(- 4) cm/s. This is equivalent to an unstirred aqueous layer of approximately 400 microns. On the other hand, the permeability coefficient of the bladder to a lipophilic molecule, hexanol, is approximately 9.0 X 10(-4) cm/s. This is equivalent to an unstirred aqueous layer of only 100 microns. The much smaller hindrance to hexanol diffusion than to water diffusion by the series barriers implies a lipophilic component to the barriers. We suggest that membrane-enclosed organelles may be so tightly packed within the cytoplasm of granular epithelial cells that they offer a substantial impediment to diffusion of water through the cell. Alternatively, the lipophilic component of the barrier could be the plasma membranes of the basal cells, which cover most of the basement membrane and thereby may restrict water transport to the narrow spaces between basal and granular cells.  相似文献   

5.
Sulfhydryl (SH) reactive reagents, such as eosin derivatives, have been found to be useful in labeling water pathways in red cells. In the present study we used an impermeable SH-reagent, a fluorescent maleimide analogue EMA (eosin-5'-maleimide), in order to identify proteins involved in water permeability response to antidiuretic hormone (ADH). We observed that: 1) EMA (1 mM) mucosal pretreatment did not modify either the basal water flux or the subsequent ADH-induced hydrosmotic response; 2) EMA added to the mucosal bath at the maximum response to ADH, significantly decreased net water flux by about 40%; similar results were obtained when 10(-5) M forskolin was used as a hydrosmotic agent. These results suggest that the inhibitory effect of EMA occurs at a post cAMP step, possibly at the level of the sulfhydryl groups of the water channels themselves. Fluorescence distribution in SDS-PAGE of Triton X-100 extracted proteins from bladder labeled with EMA in both control conditions and under ADH stimulation allowed us to identify apical membrane proteins, labeled during ADH stimulation and not labeled in water impermeable controls. Of particular importance are four proteins of 52, 32-35, 26, 17, kDa. These polypeptides are probably involved in ADH-stimulated water transport and may be components of the water channels.  相似文献   

6.
Radioactive tracer and electrical techniques were used to study the transport of nonelectrolytes and sodium, respectively, across toad urinary bladders in the presence and absence of ADH. The permeability of lipophilic molecules was roughly proportional to bulk phase oil/water partition coefficients both in the presence and absence of hormone; i.e., ADH elicited a general nonselective increase in the permeation of all nine solutes tested. The branched nonelectrolyte, isobutyramide, was less permeable than its straight-chain isomer, n-butyramide, in control tissues. ADH reduced the discrimination between these structural isomers. Hydrophilic solutes permeated more rapidly than expected. In the presence of hormone, there was no change in the permeation of large hydrophilic solutes considered to move via an extracellular pathway, but there was a marked increase in the permeability of water and other small hydrophilic solutes. Collectively, these results suggest that ADH acts to increase the motional freedom or fluidity of lipids in the cell membrane which is considered to be the preferred pathway for the permeation of lipophilic and small hydrophilic molecules. At concentrations of cAMP and ADH which elicit equivalent increments in the shortcircuit current, the effects of these agents on nonelectrolyte transport and membrane electrical conductance are divergent. Such observations suggest that some membrane effects of ADH may not be directly dependent upon cAMP. ADH in the mucosal solution increased the permeability of the toad bladder when the surface charge on the outer surface of the apical membrane was screened with the polyvalent cation, La-3+. These experiments emphasize that interaction of ADH with membranes of toad urinary bladder may account for at least some effects of this hormone.  相似文献   

7.
The water permeability of collecting ducts is greatly increased by the antidiuretic hormone, vasopressin (VP). Freeze-fracture studies were carried out to test if this permeability increase is associated with the appearance of intramembrane particle (IMP) aggregates and whether increased doses of VP lead to an increase in the number and size of particle aggregates in the luminal membrane of principal cells in the isolated cortical collecting duct. Unstimulated cells expressed 17 +/- 6.5 particle aggregates per 100 microns 2. Stimulation with VP at concentrations of 20 or 200 microU/ml increased the number of particle aggregates significantly to 129 +/- 15.8 and 324 +/- 45.8, respectively. The size of the particle aggregates increased from 0.0012 microns 2 under control conditions to 0.025 microns 2 at 20 microU/ml VP and to 0.063 microns 2 at 200 microU/ml VP. In addition, the total area occupied by the IMP increased from 0.02 microns 2/100 microns 2 (controls) to 3.17% and 20.38% (after 20 and 200 microU ADH/ml, respectively). Particle aggregates were also observed in the luminal plasma membrane of isolated collecting ducts fixed immediately after dissection, resembling the in vivo status. These results demonstrate that a dose-dependent relationship exists between the concentration of the applied VP and the number of particle aggregates, as well as the size of the aggregates. Cytoplasmic tubular vesicles in fusion with the apical membrane were observed.  相似文献   

8.
Summary Antidiuretic hormone (ADH) increases the apical (external facing) membrane water permeability of granular cells that line the toad urinary bladder. In response to ADH, cytoplasmic vesicles called aggrephores fuse with the apical plasma membrane and insert particle aggregates which are visualized by freeze-fracture electron microscopy. Aggrephores contain particle aggregates within their limiting membranes. It is generally accepted that particle aggregates are or are related to water channels. High rates of transepithelial water flow during ADH stimulation and subsequent hormone removal decrease water permeability and cause the endocytosis of apical membrane and aggrephores which retrieve particle aggregates. We loaded the particle aggregate-rich endocytic vesicles with horseradish peroxidase (HRP) during ADH stimulation and removal. Epithelial cells were isolated and homogenized, and a subcellular fraction was enriched for sequestered HRP obtained. The HRP-enriched membrane fraction was subjected to a density shifting maneuver (Courtoy et al.,J. Cell Biol. 98:870, 1984), which yielded a purified membrane fraction containing vesicles with entrapped HRP. The density shifted vesicles were composed of approximately 20 proteins including prominent species of 55, 17 and 7 kD. Proteins of these molecular weights appear on the apical surface of ADH-stimulated bladders, but not the apical surface of control bladders. Therefore, we believe these density shifted vesicles contain proteins involved in the ADH-stimulated water permeability response, possibly components of particle aggregates and/or water channels.  相似文献   

9.
Summary We recently described a method by which the resistance to water flow of the luminal membrane of ADH-stimulated toad bladder can be quantitatively distinguished from that of barriers lying in series with it. This method requires estimates of both total bladder water permeability (assessed by transbladder osmotic water flow at constant gradient) and luminal membrane water permeability (assessed by quantitation of the frequency of ADH-induced luminal membrane particle aggregates). In the present study we examined the effect of bladder distension on transepithelial osmotic water flow before and during maximal ADH stimulation. Base-line water flow was unaffected by bladder distension, but hormonally stimulated flow increased systematically as bladders became more distended. Distension had no effect on the frequency of ADH-induced intramembranous particle aggregates. By comparing the relationships between aggregate frequency and hormonally induced water permeability in distended and undistended bladders, we found that distension appeared to enhance ADH-stimulated water flow by decreasing the resistance of the series permeability barrier while the apparent water permeability associated with each single luminal membrane aggregate was unaffected. In that bladder distension causes tissue thinning, the series resistance limiting ADH-stimulated water flow appears to be accounted for by deformable barriers within the bladder tissue itself, probably unstirred layers of water.  相似文献   

10.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 μmol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

11.
The effect of Triton X-100 on purified sarcoplasmic reticulum vesicles has been studied by means of chemical, ultrastructural and enzymic techniques. At low detergent/membrane ratios (about 1 Triton X-100 per 60 phospholipid molecules) the only effect observed is an increase in vesicle permeability. Higher surfactant concentrations, up to a 1:1 detergent/phospholipid ratio, produce a large enhancement of ATPase activity. Membrane solubilization occurs as a critical phenomenon when the surfactant/phospholipid molar ratio reaches a value around 1.5:1, corresponding to 2 mumol Triton X-100/mg protein. At this point, the suspension turbidity drops, virtually all the protein and phospholipid is solubilized and every organized structure disappears. Simultaneously, a dramatic increase in the specific activity of the solubilized ATPase is observed. The sudden solubilization of almost all the bilayer components at a given detergent concentration is attributed to the relative simplicity of this membrane system. Solubilization takes place at the same surfactant/membrane ratio, at least between 0.5 and 4 mg membrane protein/ml. The non-solubilized residue seems to consist mainly of delipidized aggregated forms of ATPase.  相似文献   

12.
Incubation of the mucosal surface of the toad urinary bladder with trypsin (1 mg/ml) irreversibly decreased the short-circuit current to 50% of the initial value. This decrease was accompanied by a proportionate decrease in apical Na permeability, estimated from the change in amiloride-sensitive resistance in depolarized preparations. In contrast, the paracellular resistance was unaffected by trypsinization. Amiloride, a specific blocker of the apical Na channels, prevented inactivation by trypsin. Inhibition of Na transport by substitution of mucosal Na, however, had no effect on the response to trypsin. Trypsinization of the apical membrane was also used to study regulation of Na transport by anti-diuretic hormone (ADH) and aldosterone. Prior exposure of the apical surface to trypsin did not reduce the response to ADH, which indicates that the ADH-induced Na channels were inaccessible to trypsin before addition of the hormone. On the other hand, stimulation of short-circuit current by aldosterone or pyruvate (added to substrate-depleted, aldosterone-repleted bladders) was substantially reduced by prior trypsinization of the apical surface. Thus, the increase in apical Na permeability elicited by aldosterone or substrate involves activation of Na channels that are continuously present in the apical membrane in nonconductive but trypsin-sensitive forms.  相似文献   

13.
Changes in epithelial cell morphology, especially at the apical plasma membrane, are frequently cited as initial evidence for antidiuretic hormone (ADH)-induced increase in membrane permeability. The effects of ADH and agents that alter and modify calcium and prostaglandin concentrations on the morphology and cytology of the epithelial cells of frog (Rana pipiens) urinary bladder are presented using the techniques of transmission and scanning electron microscopy. It was found that, like ADH, calcium ionophore, A23187, produce intense microvilli formation, microfilament mobilization and an increase in the density of granules and membrane associated vesicles, suggesting a prominent role of calcium in these processes. Moreover, our results suggest that these membrane and cytosolic transformations may be mediated in part through prostaglandin formation, as exogenous PGE2 mimicked these effects, and indomethacin, a prostaglandin synthesis inhibitor, attenuated ionophore's effect on luminal cytomorphology. However, unlike ADH, prostaglandins and ionophore inhibit hormonal-induced increase in transepithelial water flow. These results suggest that other components more distal to the luminal membrane, perhaps the basolateral membrane, may be rate-limiting for transepithelial water flow and possibly are regulated by either changes in calcium concentrations or prostaglandins.  相似文献   

14.
Electron and confocal microscopy, using immunocytochemical methods, was employed to assess osmotic water permeability of the frog (Rana temporaria) urinary bladder during transcellular water transport, induced by antidiuretic hormone (ADH) or by wash-out of autacoids from serosal, ADH-free Ringer solution. The increase of osmotic water permeability of the urinary bladder was accompanied by relevant ultrastructural changes, the most remarkable being: (1) the appearance of aggregates of intramembranous particles in the apical membrane of granular cells, and the extent of the membrane area covered by the aggregates proportional to that of the water flow; (2) redistribution of actin filaments in the cytoplasm of granular cells; judging from the anti-actin label density, the number of actin filaments in the apical region of cytoplasm was reduced by 2.5–4 times compared with normal; (3) a decrease in the total electron density of the cytoplasm due to the increased water content of granular cells.  相似文献   

15.
In artificial lipid bilayer membranes, the ratio of the water permeability coefficient (Pd(water)) to the permeability coefficient of an arbitrary nonelectrolyte such as n-butyramide (Pd(n-butyramide)) remains relatively constant with changes in lipid composition and temperature, even though the individual Pd's increase more than 100- fold. I propose that this is a general rule that also holds for the lipid bilayers of cells and tissues, and that therefore if Pd(water)/Pd(solute greatly exceeds the value found for artifical lipid bilayers (where "solute" is a molecule, such as 1,6 hexanediol or n- butyramide, that crosses the cell membrane by a solubility-diffusion mechanism without the aid of a special transporting system), then water crosses the cell membrane via aqueous pores. Applying this criterion to the toad urinary bladder, we find that even in the unstimulated bladder, water probably crosses the luminal membrane primarily through small aqueous pores, and that this almost certainly the case after antidiuretic hormone (ADH) stimulation. I suggest that ADH stimulation ultimately leads either to formation (or enlargement) of pores, by the rearrangement of preexisting subunits, or to an unplugging of these pores.  相似文献   

16.
Summary The elevated osmotic permeability to water induced by antidiuretic hormone (ADH) in the isolated urinary bladder of the toad is rapidly reversed by removal or washout of the ADH. This return to normal water permeability is delayed by the suppression of production of metabolic energy by any of three maneuvers: (i) low temperature (2°C); (ii) inhibition of oxidative phosphorylation (10mm azide or 0.5mm 2,4 dinitrophenol); or (iii) inhibition of glycolysis (10mm iodoacetate or 10mm 2-deoxyglucose). Moreover, exposure to cytochalasin B, 2.1×10–5 m, either before or after initiation of the hormonal effect also delays the return of water permeability to normal following removal of ADH. When considered within constraints imposed by models which predict ADH's action on water permeability to be either via modulation of the fluidity of lipids in the membrane or via the figuration of proteins (pores) in the lipid membrane, these observations on the inhibition of the reversal of ADH stimulation of water flow are more consistent with the protein (pore) theory and place limitations on the mechanisms by which proteins in such pores can return to the resting or impermeable state.  相似文献   

17.
Triton X-100, triton X-305, twin-80 and sodium deoxycholate in definite concentrations lower the colour intensity of the solution which contains the product of the Ellman reaction. In the case of triton X-100 the colour disappearance is due to resynthesis of the Ellman reagent from 5-thio-2-nitrobenzoate with the presence of detergent in the concentration which is higher than the critical concentration of micelle-formation.  相似文献   

18.
1. Large concentrations (in mM) of ethacrynic acid (0.1), furosemide (1.0), theophylline (5.0) and osmotic diuretics (100.0) sharply increased the flux of water along an osmotic gradient through the frog urinary bladder wall. Spironolactone (0.1), and hydrochlorothiazide (5.0) showed only a weak action on osmotic permeability. MercusalR, clopamide and triamterene did not affect water transport. 2. The presence of 0.2--1.0 mU/ml vasopressin (ADH) after pretreatment with a diuretic did not result in summation of the effects of both drugs used. 0.01--0.1 mM ethacrynic acid and 0.01 mM MercusalR significantly decreased the reaction to ADH. 1.0 mM furosemide, 0.1 mM spironolactone, 0.01 mM clopamide and 0.8 mM acetazolamide did not change the reaction to ADH. A reduction in the cellular response to ADH and a decrease in the osmotic permeability of the tubular wall may be responsible in part for the diuretic action of ethacrynic acid and MercusalR.  相似文献   

19.
Antidiuretic hormone (ADH) stimulation increases the apical membrane water permeability of granular cells in toad urinary bladder. This response correlates closely with the fusion of tubular cytoplasmic vesicles with the membrane and delivery of intramembrane particle (IMP) aggregates from the tubules (aggrephores) to the apical membrane. These aggregates are believed to be associated with the channels responsible for the water permeability increase. Removal of ADH triggers apical membrane endocytosis and disappearance of aggregates from the apical membrane. However, it has been unclear whether aggregate disappearance is due to disassembly of aggregates within the apical membrane or to their endocytic retrieval as intact structures. Using colloidal gold and horseradish peroxidase to follow endocytosis from the apical surface after ADH removal, we have directly observed in cross-fractured bladder cells the intramembrane structure of intracellular vesicles that contain these fluid-phase markers. Under these conditions, intact aggregates can be identified in the membrane of tubular endocytosed vesicles. This directly demonstrates that conditions which lower apical membrane water permeability cause the tubular aggrephores to "shuttle" intact aggregates from the apical membrane back into the cytoplasm. An additional population of vesicles with tracer are found which are spherical and display structural features of the apical membrane, as well as occasional aggregates. These vesicles may be responsible for retrieval of aggregates from the surface apical membrane.  相似文献   

20.
A technique for estimating effective transepithelial capacitance in vitro was used to investigate changes in epithelial cell membrane area in response to antidiuretic hormone (ADH) exposure in toad bladder. The results indicate that transepithelial capacitance increases by about 30% within 30 min after serosal ADH addition and decreases with ADH removal. This capacitance change is not blocked by amiloride and occurs whether or not there is a transepithelial osmotic gradient. It is blocked by methohexital, a drug which specifically inhibits the hydro-osmotic response of toad bladder to ADH. We conclude that the hydro-osmotic response of toad bladder to ADH is accompanied by addition of membrane to the plasmalemma of epithelial cells. This new membrane may contain channels that are permeable to water. Stimulation of Na+ transport by ADH is not related to membrane area changes, but appears to reflect activation of Na+ channels already present in the cell membrane before ADH challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号