首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a Hipip-type iron-sulfur center (Center S-3) has been detected in the reconstitutively active soluble succinate dehydrogenases. Em7,4 determined in a particulate, antimycin A sensitive succinate-cytochrome c reductase is +60 ± 15 mV. This center is extremely labile towards oxygen in a manner similar to the reconstitutive activity of the dehydrogenase. Even freshly prepared reconstitutively active enzyme shows a considerably diminished content of Center S-3 relative to flavin and displays a partly modified spectra. All reconstitutively inactive dehydrogenases give rise to a highly modified or no Center S-3 spectra at all. These observations indicate that Center S-3 is a constituent of succinate dehydrogenase and plays a role in the physiological function of the enzyme, i.e. transferring electrons most probably to ubiquinone.  相似文献   

2.
Two distinct ferredosin-type iron-sulfur centers (designated as Centers S-1 and S-2) are present in the soulble succinate dehydrogenase in approximately equivalent concentrations to that of bound flavin. Both Centers S-1 and S-2 exhibit electron paramagnetic resonance absorbance in the reduced state at the same magnetic field (gz = 2.03, gy = 1.93, and gx = 1.91) with similar line shape. Center S-2 is reducible only chemically with dithionite and remains oxidized under physiological conditions. Thus, its functional role is unknown; however, thermodynamic and EPR characterization of this iron-sulfur center has revealed important molecular events related to this dehydrogenase. The midpoint potentials of Centers S-1 and S-2 determined in the soluble succinate dehydrogenase preparations are -5 +/- 15 mV and -400 +/- 15 mV, respectively, while corresponding midpoint potentials determined in particulate preparations, such as succinate-cytochrome c reductase or succinate-ubiquinone reductase, are 0 +/- 15 mV and -260 +/- 15 mV. Reconstitution of soluble succinate dehydrogenase with the cytochrome b-c1 complex is accompanied by a reversion of the Center S-I midpoint from -400 +/- 15 mV to -250 +/- 15 mV with a concomitant restoration of antimycin A-sensitive succinate-cytochrome c reductase activity. There observations indicate that, during the reconstitution process, Center S-I is restored to its original molecular environment. In the reconstitutively active succinate dehydrogenase, the relaxation time of Center S-2 is much shorter than that of S-1, thus Center S-2 spectra are well discernible only below 20 K (at 1 milliwatt of power), while the resonance absorbance of Center S-1 is detectable at higher temperatures and readily saturates below 15 K. Over a wide temperature range the power saturation of Center S-1 resonance absorbance is relieved by Center S-2 in the paramagnetic state, and the Center S-2 central resonance absorbance is broadened by Center S-1 spins, due to a spin-spin interaction between these centers. These observations indicate an adjacent location of these centers in the enzyme molecule. In reconstitutively inactive enzymes, subtle modification of the enzyme structure appears to shift the temperature dependence of Center S-2 relaxation to the higher temperature. Thus the EPR signals of Center S-2 are also detectable at higher temperature. In this system a splitting of the central peak of the Center S-2 spectrum due to spin-spin interaction was observed at extremely low temperatures, while this was not observed in reconstitutively active enzymes or in paritculate preparations. This spin-spin interaction phenomena of inactive enzymes disappeared upon chemical reactivation with concomitant appearance of the reconstitutive activity. These observations provide a close correlation between the molecular integrity of the enzyme and its physiological function.  相似文献   

3.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a third iron-sulfur center (Center S-3), which is paramagnetic in the oxidezed state analogous to the bacterial high potential iron-sulfur protein, has bwen detected in the reconstitutively active soluble succinate dehydrogenase preparation. Midpoint potential (at pH 7.4) of Center S-3 determined in a particulate succinate-cytochrome c reductase is +60 +/- 15 mV. In soluble form, Center S-3 becomes extremely labile towards oxygen or ferricyanide plus phenazine methosulfate similar to reconstitutive activity of the dehydrogenase. Thus, even freshly prepared reconstitutively active enzyme preparations show EPR spectra of Center S-3 which correspond approximately to 0.5 eq per flavin; in particulate preparations this component was found in a 1:1 ratio to flavin. All reconstitutively inactive dehydrogenase preparations that Center S-3 is an innate constituent of succinate dehydrogenase and plays an important role in mediating electrons from the flavoprotein subunit to most probably ubiquinone and then to the cytochrome chain.  相似文献   

4.
At temperatures below 20°K, EPR signals from a new iron-sulfur center (designated here as Center S-2 or (Fe-S)S-2) in addition to the classical “g = 1.94 signal” (designated as Center S-1 or (Fe-S)S-1) were detected in purified, soluble succinate dehydrogenase, particulate succinate ubiquinone reductase (Complex II) and particulate succinate cytochrome c reductase from bovine heart. The measured half-reduction potential (Em7.4) of Center S-1 was 0 ± 10 mV, while Em7.4 of Center S-2 was ?260 ± 15 mV in the membrane bound preparations. Upon solubilization of succinate dehydrogenase, the EPR behavior of Center S-2 became extremely labile similar to the characteristics of the reconstitutive activity of succinate dehydrogenase toward the rest of the respiratory chain.  相似文献   

5.
Two binuclear iron-sulfur clusters (designated S-1 and S-2) are present in succinate dehydrogenase in approximately equal concentration to that of flavin. The large difference in their midpoint potentials (0 and -400 mV, respectively, in the soluble enzyme) permits the acquisition of individual electron paramagnetic resonance spectra characterized by nearly identical rhombic g tensors (gz = 2.025, gy = 1.93, gx = 1.905). Spin-coupling between the two centers is manifested by broadening and splitting of spectra of reconstitutively active and inactive succinate dehydrogenase, respectively, as the temperature is lowered; relief of power saturation of Center S-1 spectra on reduction of Center S 2; and observation of half-field ("delta ms = 2") signals in the dithionite-reduced enzyme. Saturation behavior of fully reduced dehydrogenase is consistent with the presence of S-1 and S-2 at equivalent concentrations/molecule. Simulation of the spin-coupled spectra, assuming dipolar interaction, provides information on molecular structure. Electron paramagnetic resonance spectra of the enzyme in 80% dimethylsulfoxide are nearly identical to the characteristic binuclear spectra obtained with adrenodoxin. These data provide additional evidence for binuclear structure of both Center S-1 and S-2. The extremely fast relaxation of Center S-2 at low temperatures would imply either an anomalously small value of J or an alternative relaxation mechanism, possibly due to the coupling between S-1 and S-2.  相似文献   

6.
EPR signals arising from at least seven iron-sulfur centers were resolved in both reconstitutively active and inactive NADH dehydrogenases, as well as in particulate NADH-UQ reductase (Complex I). EPR lineshapes of individual iron-sulfur centers in the active dehydrogenase are almost unchanged from that in Complex I. Iron-sulfur centers in the inactive dehydrogenase give broadened EPR spectra, suggesting that modification of iron-sulfur active centers is associated with loss of the reconstitutive activity of the dehydrogenase. With the reconstitutively active dehydrogenase, the Em8.0 value of Center N-2 (iron-sulfur centers associated with NADH dehydrogenase are designated with prefix N) was shifted to a more negative value than in Complex I and restored to the original value on reconstitution of the enzyme with purified phospholipids.  相似文献   

7.
Reconstitutively active and inactive succinate dehydrogenase have been investigated by low temperature magnetic circular dichroism (MCD) and EPR spectroscopy and room temperature CD and absorption spectroscopy. Reconstitutively active succinate dehydrogenase is found to contain three spectroscopically distinct Fe-S clusters: S1, S2, and S3. In agreement with previous studies, MCD and CD spectroscopy confirm that center S1 is a succinate-reducible [2Fe-2S]2+,1+ center. The MCD characteristics of center S2 identify it as a dithionite-reducible [4Fe-4S]2+,1+ similar to those in bacterial ferredoxins. EPR power saturation studies and the weakness of the EPR signal from reduced S2 indicate that there is a weak magnetic interaction between centers S1 and S2 in their paramagnetic, S = 1/2, reduced states. Center S3 is identified both by the form of the MCD spectrum and the characteristic magnetization behavior as a reduced [3Fe-xS] center in both succinate- and dithionite-reduced reconstitutively active succinate dehydrogenase. Arguments are presented in favor of centers S2 and S3 being separate centers rather than interconversion products of the same cluster. Reconstitutively inactive succinate dehydrogenase is found to be deficient in center S3. These results resolve many of the controversies concerning the Fe-S cluster content of succinate dehydrogenase and reconcile published EPR data with analytical and core extrusion studies. Moreover, they indicate that center S3 is a necessary requirement for reconstitutive activity and suggest that it is able to sustain ubiquinone reductase activity as a [3Fe-xS] center.  相似文献   

8.
J X Xu  L Yu  C A Yu 《Biochemistry》1987,26(24):7674-7679
The involvement of the carboxyl groups in the membrane-anchoring protein (QPs) in reconstitution of succinate dehydrogenase to form succinate-ubiquinone reductase is studied by using a carboxyl group modifying reagent, dicyclohexylcarbodiimide (DCCD). Inactivation of QPs by DCCD is found to be dependent on the temperature, pH, detergent, and DCCD concentration used. When QPs is treated with 300 molar excess DCCD at room temperature for 10 min, about 90% of the original reconstitutive activity is lost. When intact or reconstituted succinate-ubiquinone reductase formed from reconstitutively active succinate dehydrogenase and QPs is treated with DCCD under the same conditions, no loss of succinate-ubiquinone reductase activity is observed. However, when a mixture of reconstitutively inactive succinate dehydrogenase and QPs is treated with DCCD before being reconstituted with active succinate dehydrogenase, an inactivation behavior similar to that with QPs alone is observed. These results indicate that DCCD modifies the carboxyl groups of QPs which are essential for the interaction with succinate dehydrogenase to form succinate-ubiquinone reductase. Inactivation of QPs by DCCD parallels the incorporation of DCCD into QPs. About two carboxyl groups per molecule of QPs are essential for the interaction with succinate dehydrogenase. These essential carboxyl groups are located in the smaller subunit (Mr 13,000) of QPs. Modification of QPs by DCCD also alters the heme environment of cytochrome b560.  相似文献   

9.
Chromatophores from the photosynthetic bacterium, Chromatium vinosum, have been prepared which photoreduce NAD+ with either succinate or reduced dichlorophenolindophenol as electron donors. NAD+ reduction is inhibited by uncouplers as well as inhibitors of cyclic photophosphorylation. These chromatophores contain several bound iron-sulfur centers which have been detected by low-temperature EPR spectroscopy. One center, having a g 2.01 EPR signal in the oxidized state, has Em7.5 = +50 mV and is partially reduced by succinate in the dark. Three iron-sulfur centers having g 1.93 EPR signals have been resolved by redox titration, and the Em7.5 values of these centers are ?50, ?175 and ?250 mV, respectively. Studies of the involvement of these centers in electron transfer from donors to NAD+ have indicated that the center with Em = ?50 mV is succinate reducible in the dark and appears to be analogous to center S-1 of succinic dehydrogenase in other systems. An additional g 1.93 iron-sulfur center can be photoreduced in the presence of electron donors and this reduction is inhibited by uncouplers. The possible role of the two low-potential iron-sulfur centers in relation to the dehydrogenases functioning in NAD+ reduction is considered.  相似文献   

10.
Tomoko Ohnishi 《BBA》1975,387(3):475-490
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 °K) and potentiometric titration.Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix “N”) resolves into two single electron titrations with Em 7.2 values of ?380±20 mV and ?240±20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g// = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g// = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high Em 7.2 value (?20±20 mV).Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with Em 7.2 = ? 240±20 mV is defined as Center N-3 (gz = 2.10, (gy = 1.93?), gx = 1.87); the ?405±20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 °K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with Em 7.2 = ?260±20 mV. The multiplicity of peaks suggests the presence of at least two different ironsulfur centers having similar Em 7.2 values (?260±20 mV); hence, tentatively assigned as N-5 and N-6.Consistent with the individual Em 7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the Em 7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. Em 7.2 values and EPR lineshapes for the other ironsulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show Em 7.2 values around -250 mV; Center N-2 exhibits a high Em 7.2 (?20±20 mV), while Center N-1a shows a very low Em 7.2 (?380±20 mV).  相似文献   

11.
An analysis of the paramagnetic components present in mitochondria isolated from the poky mutant of Neurospora crassa is described. The study was undertaken with a view to shedding light on the nature of the cyanide- and antimycin A-resistant alternative terminal oxidase which is present in these preparations. Of the ferredoxin-type iron-sulfure centers, only Centers S-1 and S-2 of succinate dehydrogenase could be detected in significant quantities. Paramagnetic centers attributable to Site I were virtually absent. In the oxidized state, at least two 'high potential iron sulfur' centers could be distinguished and these were attributed to Center S-3 of succinate dehydrogenase and a second component analogous to that found in mammalian systems. Much of the Center S-3 signal was in a highly distorted state which was apparently dependent upon the presence of an accompanying free radical species. At lower field positions, a succinate-reducible signal peaking around g = 3.15 was found. This signal is caused by a low spin heme species, presumably the cytochrome c which is the only major cytochrome in these mitochondria. At even lower field positions, signals attributable to iron in a field of low symmetry at g = 4.3 and multiple high spin heme species around g = 6, could be distinguished. The effects of salicylhydroxamic acid, an inhibitor of the alternative oxidase, were tested on these components. Effects could be seen on at least one high spin heme component and also partially upon the distorted Center S-3 signal converting part of it to a signal indistinguishable from center S-3. Some increase in the g = 4.3 iron signal was also noted. No effects of the inhibitor on the ferredoxin-type centers were detected.  相似文献   

12.
13.
Iron-sulfur clusters present in rat liver submitochondrial particles were characterized by ESR at temperatures between 30 and 5.5 K combined with potentiometric titrations. The spectral and thermodynamic characteristics of the iron-sulfur clusters were generally similar to those previously reported for pigeon or bovine heart submitochondrial particles. Clusters N-1a, N-1b, N-2, N-3 and N-4 of NADH dehydrogenase had midpoint oxidation-reduction potentials at pH 7.5 of ?425, ?265, ?85, ?240 and ?260 mV, respectively. Clusters S-1 and S-3 of succinate dehydrogenase had midpoint potentials of 0 and +65 mV, respectively. The iron-sulfur cluster of electron-transferring flavoprotein-ubiquinone oxidoreductase exhibited the gz signal at g = 2.08 and had a midpoint potential of +30 mV. This signal was relatively prominent in rat liver compared to pigeon or bovine heart.Submitochondrial particles from rats chronically treated with ethanol (36% of total calories, 40 days) showed decreases of 20–30% in amplitudes of signals due to clusters N-2, N-3 and N-4 compared to those from pair-fed control rats. Signals from clusters N-1b, S-1, S-3 and electron-transferring flavoprotein-ubiquinone oxidoreductase were unaffected. Microwave power-saturation behavior was similar for both submitochondrial particle preparations, suggesting that the lower signal amplitudes reflected a lower content of these particular clusters. NADH dehydrogenase activity was significantly decreased (46%), whilst succinate dehydrogenase activity was elevated (25%), following chronic ethanol consumption. The results indicate that chronic ethanol treatment leads to an alteration of the structure and function of the NADH dehydrogenase segment of the electron transfer chain. This alteration is one of the factors contributing to the lower respiration rates observed following chronic ethanol administration.  相似文献   

14.
Electron paramagnetic resonance studies of Complex II from the mitochondrial respiratory chain and soluble preparations of succinate dehydrogenase have, for the first time, identified a signal arising from a [4Fe-4S]1+ cluster, S2, in dithionite-reduced samples. Redox titrations, monitored by electron paramagnetic resonance spectroscopy demonstrate that this signal appears at the same midpoint potential as the enhancement of the spin relaxation properties of the [2Fe-2S]1+ center, S1, in both Complex II and reconstitutively active soluble enzyme. The results complement recent magnetic circular dichroism studies of succinate dehydrogenase (Johnson, M. K., Morningstar, J. E., Bennett, D. E., Ackrell, B. A. C., and Kearney, E. B. (1985) J. Biol. Chem. 260, 7368-7378) which assigned cluster S2 as a [4Fe-4S]2+,1+ center and provide evidence for spin interaction between the paramagnetic reduced forms of centers S1 and S2.  相似文献   

15.
An analysis of the paramagnetic components present in mitochondria isolated from the poky mutant of Neurospora crassa is described. The study was undertaken with a view to shedding light on the nature of the cyanide- and antimycin A-resistant alternative terminal oxidase which is present in these preparations.

Of the ferredoxin-type iron-sulfur centers, only Centers S-1 and S-2 of succinate dehydrogenase could be detected in significant quantities. Paramagnetic centers attributable to Site I were virtually absent. In the oxidized state, at least two ‘high potential iron sulfur’ centers could be distinguished and these were attributed to Center S-3 of succinate dehydrogenase and a second component analogous to that found in mammalian systems. Much of the Center S-3 signal was in a highly distorted state which was apparently dependent upon the presence of an accompanying free radical species. At lower field positions, a succinate-reducible signal peaking around g = 3.15 was found. This signal is caused by a low spin heme species, presumably the cytochrome c which is the only major cytochrome in these mitochondria. At even lower field positions, signals attributable to iron in a field of low symmetry at g = 4.3 and multiple high spin heme species around g = 6, could be distinguished.

The effects of salicylhydroxamic acid, an inhibitor of the alternative oxidase, were tested on these components. Effects could be seen on at least one high spin heme component and also partially upon the distorted Center S-3 signal converting part of it to a signal indistinguishable from Center S-3. Some increase in the g = 4.3 iron signal was also noted. No effects of the inhibitor on the ferredoxin-type centers were detected.

These results are interpreted with respect to the nature and location of the alternative oxidase and with respect to possible models for the nature of the alternative oxygen-consuming component.  相似文献   


16.
1. An electron paramagnetic resonance study of the high potential iron sulfur (HiPIP-type) Center S-3 of higher plant mitochondria is described. This center is the major HiPIP-type center associated with plant mitochondria and it displays physical properties which are similar to its mammalian counterpart. It has a pH-independent midpoint potential of +65 +/- 10 mV between pH 6.0 and 8.5. 2. The behavior of Center S-3 in a variety of steady-state conditions suggests that it is of physiological significance in electron transport. Furthermore, it can be shown that the alternative oxidase, which is present in many higher plant mitochondria, tends to keep this center oxidized in the presence of succinate and cyanide. This indicates that the alternative oxidation site is on the electron-donating side of the Center S-3. 3. Salicylhydroxamic acid, an inhibitor of the alternative pathway, does not affect the midpoint potential, signal size or shape, or temperature and power saturation profiles of Center S-3, suggesting that direct autoxidation of this center cannot account for alternative oxidase activity. This is further confirmed by the finding that the presence of succinate dehydrogenase is not necessary for alternative oxidase activity with NADH as respiratory substrate in submitochondrial particles.  相似文献   

17.
X-band electron-paramagnetic-resonance spectroscopy at 4.2--77K combined with measurements of oxidation-reduction potential was used to identify iron--sulphur centres in Arum maculatum (cuckoo-pint) mitochondria. In the oxidized state a signal with a derivative maximum at g = 2.02 was assigned to succinate dehydrogenase centre S-3. Unreduced particles showed additional signals at g = 2.04 and 1.98 (at 9.2 GHz), which may be due to a spin-spin interaction. In the reduced state a prominent signal at g = 1.93 and 2.02 was resolved into at least three components that could be assigned to centres S-1 and S-2 of succinate dehydrogenase (midpoint potentials -7 and -240 mV respectively at pH 7.2) and a small amount of centre N-1b (e'o= -240 mV) of NADH-ubiquinone reductase. In addition, changes in line shape around -10 mV indicated the presence of a fourth component in this signal. The latter was more readily reduced by NADH than by succinate, suggesting that it might be associated with the external NADH dehydrogenase. The iron-sulphur centres of NADH-ubiquinone reductase were present in an unusually low concentration, indicating that the alternative, non-phosphorylating, NADH dehydrogenase containing a low number of iron-sulphur centres may be responsible for most of the high rate of oxidation of NADH.  相似文献   

18.
The reoxidation phase of the catalytic cycle of succinate dehydrogenase was studied in Complex II preparations' by the rapid freeze-electron paramagnetic resonance (epr) technique. With the synthetic water-soluble Q1 analog, 2,3-dimethoxy-5-methyl-6-pentyl-1, 4-benzoquinone (DPB), as the oxidant, the observed reoxidation of the epr-detectable components, previously reduced with dithionite or succinate, came to completion within a few milliseconds, well within the turnover time of the enzyme. Only ~80% of Fe-S center 1 and the HiPIP (the high-potential cluster) Fe-S center reacted rapidly with DPB, however; similarly incomplete reactions were observed previously in our studies of the reduction of the enzyme by succinate. The subsequent addition of ferricyanide, which appears to act as a chemical oxidant in these experiments, caused immediate reoxidation of the Fe-S centers and of the free radical. Ferricyanide and phenazine methosulfate (PMS) reoxidized all epr-detectable components in Complex II as well as in reconstitutively active, soluble preparations in' <6 ms, even at 0°C. Thus, reoxidation of the purified enzyme by PMS cannot be rate-limiting. Carboxamides and thenoyltrifluoroacetone inhibit strongly the reoxidation of the Fe-S center 1 and the HiPIP center by DPB, but not their reduction by succinate. These and other data suggest that these inhibitors block electron transport from the dehydrogenase to the Q pool on the O2-side of the HiPIP center, but there is no evidence that they combine directly with the iron. A recent report that Wurster's blue reacts with soluble succinate dehydrogenase much more rapidly than does PMS could not be confirmed. The two oxidants react at equal rates with the purified soluble enzyme before and after it has been reincorporated into membranes.  相似文献   

19.
Several iron-sulfur centers in the NADH-ubiquinone segment of the respiratory chain in pigeon heart mitochondria and in submitochondrial particles were analyzed by the combined application of cryogenic EPR (between 30 and 4.2 degrees K) and potentiometric titration. Center N-1 (iron-sulfur centers associated with NADH dehydrogenase are designated with the prefix "N") resolves into two single electron titratins with EM7.2 values of minus 380 plus or minus 20 mV and minus 240 plus or minus 20 mV (Centers N-1a and N-1b, respectively). Center N-1a exhibits an EPR spectrum of nearly axial symmetry with g parellel = 2.03, g = 1.94, while that of Center N-1b shows more apparent rhombic symmetry with gz = 2.03, gy = 1.94 and gx = 1.91. Center N-2 also reveals EPR signals of axial symmetry at g parallel = 2.05 and g = 1.93 and its principal signal overlaps with those of Centers N-1a and N-1b. Center N-2 can be easily resolved from N-1a and N-1b because of its high EM7.2 value (minus 20 plus or minus 20 mV). Resolution of Centers N-3 and N-4 was achieved potentiometrically in submitochondrial particles. The component with EM7.2 = minus 240 plus or minus 20 mV is defined as Center N-3 (gz = 2.10, (gz = 2.10, (gy = 1.93?), GX = 1.87); the minus 405 plus or minus 20 mV component as Center N-4 (gz = 2.11, (gy = 1.93?), gx = 1.88). At temperatures close to 4.2 degrees K, EPR signals at g = 2.11, 2.06, 2.03, 1.93, 1.90 and 1.88 titrate with EM7.2 = minus 260 plus or minus 20 mV. The multiplicity of peaks suggests the presence of at least two different iron-sulfur centers having similar EM7.2 values (minus 260 plus or minus 20 mV); HENCE, tentatively assigned as N-5 and N-6. Consistent with the individual EM7.2 values obtained, addition of succinate results in the partial reduction of Center N-2, but does not reduce any other centers in the NADH-ubiquinone segment of the respiratory chain. Centers N-2, N-1b, N-3, N-5 and N-6 become almost completely reduced in the presence of NADH, while Centers N-1a and N-4 are only slightly reduced in pigeon heart submitochondrial particles. In pigeon heart mitochondria, the EM7.2 of Center N-4 lies much closer to that of Center N-3, so that resolution of the Center N-3 and N-4 spectra is not feasible in mitochondrial preparations. EM7.2 values and EPR lineshapes for the other iron-sulfur centers of the NADH-ubiquinone segment in the respiratory chain of intact mitochondria are similar to those obtained in submitochondrial particle preparations. Thus, it can be concluded that, in intact pigeon heart mitochondria, at least five iron-sulfur centers show EM7.2 values around minus 250 mV; Center N-2 exhibits a high EM7.2 (minus 20 plus or minus 20 mV), while Center N-1a shows a very low EM7.2 (minus 380 plus or minus 20 mV).  相似文献   

20.
Antimycin-insensitive succinate-cytochrome c reductase activity has been detected in pure, reconstitutively active succinate dehydrogenase. The enzyme catalyzes electron transfer from succinate to cytochrome c at a rate of 0.7 mumole succinate oxidized per min per mg protein, in the presence of 100 microM cytochrome c. This activity, which is about 2% of that of reconstitutive (the ability of succinate dehydrogenase to reconstitute with coenzyme ubiquinone-binding proteins (QPs) to form succinate-ubiquinone reductase) or succinate-phenazine methosulfate activity in the preparation, differs from antimycin-insensitive succinate-cytochrome c reductase activity detected in submitochondrial particles or isolated succinate-cytochrome c reductase. The Km for cytochrome c for the former is too high to be measured. The Km for the latter is about 4.4 microM, similar to that of antimycin-sensitive succinate-cytochrome c activity in isolated succinate-cytochrome c reductase, suggesting that antimycin-insensitive succinate-cytochrome c activity of succinate-cytochrome c reductase probably results from incomplete inhibition by antimycin. Like reconstitutive activity of succinate dehydrogenase, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase is sensitive to oxygen; the half-life is about 20 min at 0 degrees C at a protein concentration of 23 mg/ml. In the presence of QPs, the antimycin-insensitive succinate-cytochrome c activity of succinate dehydrogenase disappears and at the same time a thenoyltrifluoroacetone-sensitive succinate-ubiquinone reductase activity appears. This suggests that antimycin-insensitive succinate-cytochrome c reductase activity of succinate dehydrogenase appears when succinate dehydrogenase is detached from the membrane or from QPs. Reconstitutively active succinate dehydrogenase oxidizes succinate using succinylated cytochrome c as electron acceptor, suggesting that a low potential intermediate (radical) may be involved. This suggestion is confirmed by the detection of an unknown radical by spin trapping techniques. When a spin trap, alpha-phenyl-N-tert-butylnitrone (PBN), is added to a succinate oxidizing system containing reconstitutively active succinate dehydrogenase, a PBN spin adduct is generated. Although this PBN spin adduct is identical to that generated by xanthine oxidase, indicating that a perhydroxy radical might be involved, the insensitivity of this antimycin-insensitive succinate-cytochrome c reductase activity to superoxide dismutase and oxygen questions the nature of this observed radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号