首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents the scanning and transmission electron microscopy of the spermatozoa and sperm packets of three inseminating species of the glandulocaudine tribe Xenurobryconini. All three species, Scopaeocharax rhinodus, Tyttocharax cochui, and T. tambopatensis produce unencapsulated sperm packets (= spermatozeugmata) of similar morphology. The external anterior surface of each spermatozeugma is comprised of elongate sperm heads arranged in parallel, and the posterior part is made up of tightly packed flagella. The interior of the anterior portion consists of alternating layers of sperm heads and flagella. The remarkable integrity of each packet appears to be maintained through an electron-dense secretion seen among all parts of the cells. Spermatozeugma formation takes place within the spermatocysts at the end of spermiogenesis and at spermiation fully formed packets are released. Morphology of the mature spermatozoa was similar in all three species. Each nucleus is elongate, flattened along most of its length, and tapers at either end. The two centrioles are nearly parallel to one another and are located just anterior to the nucleus. Elongate mitochondria are located along the nucleus. The single flagellum, which lacks axonemal fins, is initially contained within a short cytoplasmic collar. Accessory microtubules run parallel to the long axis of the nucleus just beneath the plasma membrane. During spermiogenesis, no nuclear rotation occurs and the cytoplasmic canal containing the flagellum elongates along with the nucleus. However, prior to spermiation all but the anterior portion of the collar degenerates. The sperm modifications observed in these species are discussed as adaptations to the unique reproductive habit of insemination.  相似文献   

2.
Light and electron microscopy were used to investigate the morphology of reproductive characters in a characid fish, Brittanichthys axelrodi. Spermatozoa were found in ovaries of females, thereby confirming insemination in this species. Bony hooks can be found on the fourth unbranched ray and branched rays 1-4 of the anal fin and the unique sigmoidally-curved ray of the caudal fin in mature males. Testes have three distinct regions: an anterior spermatogenic region, an aspermatogenic middle region lined with a simple squamous epithelium and used for storage of mature spermatozoa, and a posterior region of coiled chambers lined with a high simple cuboidal epithelium. The most posterior region appears to be instrumental in the formation and storage of spermatozeugmata, unencapsulated sperm packets. Thus far, this tripartite testis morphology is unique among characids. The mature spermatozoon has an elongate nucleus ( approximately 5 microm in length). A striated rootlet originates at the anterior end of the distal centriole and continues to the anterior tip of the cell. The striated rootlet wraps around the entire ventral area of the anterior part of the nucleus and appears to continue around the anterior tip of the nucleus and down the dorsal side as electron-dense material. Several large, spherical mitochondria ( approximately 0.6 microm in diameter) with lamellar cristae overlap the posterior end of the nucleus and continue beyond together with the cytoplasmic collar that contains the flagellum which lacks axonemal fins. Each spermatozeugma is lanceolate in shape when sectioned mid-sagitally, with the core staining positively for mucopolysaccharides. In both sexes, the gonopore opens posterior to the anus, with the urinary pore having a separate opening posterior to the gonopore. Bands of skeletal muscle were found in the area of the male gonopore. These morphological features are likely linked to the reproductive mode of insemination, a trait that is so far as known, relatively rare among teleost fishes, but is proving increasingly frequent among certain groups of characid fishes.  相似文献   

3.
The sperm cells of Kellia suborbicularis are narrow with a short bullet‐shaped acrosome, a 5.0–5.5 µm long and 0.4–0.6 µm broad nucleus, and a short midpiece with a ring of five mitochondria. The disposition of the subacrosomal substance into a coronet‐like formation is unique, and the sperm structure offers no clue to the relationship between Kellia and other galeommatoidean genera. The possible significance of narrow elongate sperm for their entry into the brood pouch is discussed.  相似文献   

4.
Understanding poriferan choanocyte ultrastructure is crucial if we are to unravel the steps of a putative evolutionary transition between choanoflagellate protists and early metazoans. Surprisingly, some aspects of choanocyte cytology still remain little investigated. This study of choanocyte ultrastructure in the halisarcid demosponge Halisarca dujardini revealed a combination of minor and major distinctive traits, some of them unknown in Porifera so far. Most significant features were 1) an asymmetrical periflagellar sleeve, 2) a battery of specialized intercellular junctions at the lateral cell surface complemented with an array of lateral interdigitations between adjacent choanocytes that provides a particular sealing system of the choanoderm, and 3) a unique, unexpectedly complex, basal apparatus. The basal apparatus consists of a basal body provided with a small basal foot and an intricate transverse skeleton of microtubules. An accessory centriole, which is not perpendicular to the basal body, is about 45°. In addition, a system of short striated rootlets (periodicity = 50–60 nm) arises from the proximal edge of the basal body and runs longitudinally to contact the nuclear apex. This is the first flagellar rootlet system ever found in a choanocyte. The accessory centriole, the rootlet system, and the nuclear apex are all encircled by a large Golgi apparatus, adding another distinctive feature to the choanocyte cytology. The set of distinct features discovered in the choanocyte of H. dujardini indicates that the ultrastructure of the poriferan choanocyte may vary substantially between sponge groups. It is necessary to improve understanding of such variation, as the cytological features of choanocytes are often coded as characters both for formulation of hypotheses on the origin of animals and inference of phylogenetic relationships at the base of the metazoan tree. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

5.
The anacrosomal aquasperm of the gadiform Merluccius merluccius is ultrastructurally similar to the advanced type II spermatozoa (perciform‐type sperm) typically found in most Perciformes. The perciform‐type spermatozoon is characterized by the lateral insertion of the flagellum and the location of the centrioles outside the nuclear fossa. Apart from these characteristics, the spermatozoon of M. merluccius is remarkable because of the mutually parallel arrangement of the centrioles, a rare feature among fishes, which is considered an apomorphic condition for animal sperm cells. Within the superorder Paracanthopterygii, which contains a large diversity of sperm patterns resulting from a high number of apomorphies, a perciform‐type sperm is present only in the order Gadiformes. The significance of the presence of perciform‐type spermatozoa in the three investigated gadiform families is discussed in a phylogenetic context.  相似文献   

6.
In Salminus, spermiogenesis is cystic and gives origin to a type I aquasperm. Spermatid differentiation is characterized by chromatin condensed into thick fibres, nuclear rotation, nuclear fossa formation, cytoplasmic channel formation, mitochondrial fusion producing long and ramified mitochondria, and the presence of several membranous concentric rings around the plasma membrane that encircles the cytoplasmic channel. In Salminus and Brycon, spermatozoa are very similar. They exhibit a spherical nucleus and chromatin condensed into fibre clusters, and a deep nuclear fossa. They show a long midpiece with few elongate mitochondria at the initial region and a cytoplasmic channel completely encircled by one or two membranous concentric rings. The flagellar axis is perpendicular to the nucleus and exhibits the classic axoneme (9 + 2). The very strong similarity observed between Salminus and Brycon spermatozoa supports the hypothesis that these subfamilies are likely to have a monophyletic origin.  相似文献   

7.
The spermiogenesis and the sperm ultrastructure of several species of Coniopterygidae have been examined. The spermatozoa consist of a three-layered acrosome, an elongated elliptical nucleus, a long flagellum provided with a 9+9+3 axoneme and two mitochondrial derivatives. No accessory bodies were observed. The axoneme exhibits accessory microtubules provided with 13, rather than 16, protofilaments in their tubular wall; the intertubular material is reduced and distributed differently from that observed in other Neuropterida. Sperm axoneme organization supports the isolated position of the family previously proposed on the basis of morphological data.  相似文献   

8.
Spermatic characteristics were studied in 10 species representing several distinct groups within the catfish family Doradidae. Interestingly, different types of spermatogenesis, spermiogenesis and spermatozoa are correlated with intrafamilial groups previously proposed for Doradidae. Semi-cystic spermatogenesis, modified Type III spermiogenesis, and biflagellate sperm appear to be unique within Doradidae to the subfamily Astrodoradinae. Other doradid species have sperm with a single flagellum, cystic spermatogenesis, and spermiogenesis of Type I (Pterodoras granulosus, Rhinodoras dorbignyi), Type I modified (Oxydoras kneri), or Type III (Trachydoras paraguayensis). Doradids have an external mode of fertilization, and share a few spermatic characteristics, such as cystic spermatogenesis, Type I spermiogenesis and uniflagellate sperm, with its sister group Auchenipteridae, a family exhibiting sperm modifications associated with insemination and internal fertilization. Semi-cystic spermatogenesis and biflagellate spermatozoa are also found in Aspredinidae, and corroborate recent proposals that Aspredinidae and Doradoidea (Doradidae + Auchenipteridae) are sister groups and that Astrodoradinae occupies a basal position within Doradidae. The co-occurrence in various catfish families of semi-cystic spermatogenesis and either biflagellate spermatozoa (Aspredinidae, Cetopsidae, Doradidae, Malapturidae, Nematogenyidae) or uniflagellate sperm with two axonemes (Ariidae) reinforces the suggestion that such characteristics are correlated. Semi-cystic spermatogenesis and biflagellate sperm may represent ancestral conditions for Loricarioidei and Siluroidei of Siluriformes as they occur in putatively basal members of each suborder, Nematogenyidae and Cetopsidae, respectively. However, if semi-cystic spermatogenesis and biflagellate sperm are ancestral for Siluriformes, cystic spermatogenesis and uniflagellate sperm have arisen independently in multiple lineages including Diplomystidae, sister group to Siluroidei.  相似文献   

9.
Spermatogenesis and spermatozoon ultrastructure in the Nile electric catfish Malapterurus electricus are described using scanning and transmission electron microscopy. Although the testis organization conforms to the ‘unrestricted’ spermatogonial type, the species has a rare type of spermatogenesis not previously described among catfishes, ‘semicystic’, in which the cyst ruptures before the spermatozoon stage. Spermiogenesis also involves some peculiar features such as condensation of the chromatin in the posterior part of the nucleus to form a compact electron‐dense mass with some irregular electron‐lucent lacunae, while the uppermost part of the nucleus is a loose electron‐lucent area, absence of the nuclear rotation and, as a consequence, the centriolar complex and the initial segment of each flagellum arise directly in a position perpendicular to the basal pole of the nucleus, and occurrence of numerous vesicles in the midpiece. In addition, spermiogenesis includes migration of the diplosome and mitochondria to the basal pole of the nucleus, formation of two moderate nuclear fossae, each of which contains the centriolar complex, development of two independent flagella and elimination of the excess cytoplasm. The mature spermatozoon has a more or less round head with no acrosome or acrosomal vesicle, a long midpiece with numerous mitochondria and vesicles and two long tails or flagella having the classical axoneme structure of 9 + 2 microtubular doublet pattern and with no lateral fins and membranous compartment. These findings suggest that the ultrastructural features of spermiogenesis and spermatozoa of Melectricus are synapomorphies of types I and II spermiogenesis and spermiogenesis is closely similar to the type described in the Nile catfish Chrysichthys auratus.  相似文献   

10.
Sperm ultrastructure of the deep‐sea hydrothermal vent octopod Vulcanoctopus hydrothermalis has been carried out by transmission electron microscopy. Spermatozoa of this species have the shortest head observed so far in octopodids. The acrosome possesses a helix with six gyres. The rod‐shaped nucleus is short and wide in relation with other octopodids. Noteworthy features along the nucleus are the regularly disposed dense bands of cytoplasm, which have not been observed before in octopodids. The nuclear fossa is very short and wavy. Mitochondrial sheath has 10 elongated mitochondria running parallel to the axoneme‐coarse fibers complex. Sperm morphology of V. hydrothermalis resembles that of Enteroctopus dofleini, suggesting a close phylogenetic relationship. J. Morphol. 271:932–936, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Abstract. The ultrastructure of the male reproductive system in the polyclad flatworm Pleioplana atomata is described. Numerous testes are scattered throughout the entire body but are heavily concentrated on the ventral side. All stages of differentiating sperm cells are present in all testes follicles. Intercellular bridges connect spermatocytes and spermatids derived from a single spermatogonium. In the distal part of spermatids, a zone of differentiation develops with a row of microtubules beneath the plasmalemma. Adjacent to these microtubules, an intercentriolar body is flanked by two basal bodies that give rise to two axonemes (each with a 9+“1” microtubular pattern) that face in opposite directions. The Golgi complex appears in the central portion of the spermatid and produces numerous small and large electron-dense bodies. The small bodies surround the nucleus, whereas the large bodies cluster along with the mitochondria in the central part of the spermatid. Development of the spermatid leads to cell elongation and formation of a filiform, biflagellate mature spermatozoon with cortical microtubules all along the sperm shaft. The male canal system consists of paired vasa deferentia that separately enter a single seminal vesicle. A single prostatic canal connects the seminal vesicle to the prostatic vesicle. Ultrastructurally, the seminal vesicle and prostatic canal are very similar, and along with the prostatic vesicle and stylet pocket, are lined by a ciliated epithelium. The ultrastructure of the prostatic vesicle indicates that it probably produces a large volume of seminal fluid that, along with spermatozoa, is transferred to the mating partner through a stylet. Some of the findings, particularly on sperm ultrastructure, may provide characters useful for phylogenetic analysis.  相似文献   

12.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The histology of the reproductive organs is studied in the protandric hermaphroditic Tellimya ferruginosa. In NW Europe the species reproduces from May through August. Sperm transfer takes place when mature testis follicles are transplanted to the gills or walls of the mantle cavity in recipient hermaphroditic or female bivalves. Transplantation is accompanied by histological changes and sperm cells are released when transplants perish with age. Details are given on the reproduction in Montacuta percompressa which takes place from March through October in North Carolina, USA. All shelled bivalves are females and it is postulated that spermatogenic bodies attached to gills or other surfaces in the female's mantle cavity and previously considered to be dwarf males arise from transplanted larval gonads. The ultrastructure of the euspermatozoa and/or the anucleate paraspermatozoa is described in T. ferruginosa, T. tenella, and M. percompressa. The sperm of the first two species share a number of significant apomorphies with those of another montacutid, Brachiomya stigmatica. In the simultaneous hermaphroditic M. substriata the nucleate paraspermatozoa associate with the euspermatozoa to form spherical spermatozeugmata that are stored in the testis.  相似文献   

14.
The alignment of sperm in a cloacal sperm storage gland, the spermatheca, was studied in female desmognathine salamanders by scanning and transmission electron microscopy. Females representing nine species and collected in spring, late summer, and fall in the southern Appalachian Mountains contained abundant sperm in their spermathecae. The spermatheca is a compound tubuloalveolar gland connected by a single common tube to the middorsal wall of the cloaca. Sperm enter the common tube in small groups aligned in parallel along their axes, and continue in a straight course until encountering divisions of the common tube (neck tubules) or luminal borders of distal bulbs, which can act as barriers. Sperm may form tangles, in which small clusters retain their mutual alignment, at the branches of the neck tubules from the common tube, or in the lumen of the distal bulbs, where subsequent waves of sperm collide with sperm already present. The nuclei of some sperm from the initial group to encounter the walls of the distal bulbs appear to become embedded in secretory material on the luminal border or in the apical cytoplasm of the spermathecal epithelial cells. We propose that these sperm become trapped in the spermatheca and are ultimately degraded. J. Morphol. 238:143–155, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Abstract. Male polyps of the antipatharian Cirrhipathes sp., collected along the coral reef of Siladen Island (Sulawesi, Indonesia), were studied in order to gain an insight into the reproductive biology. Spermatocysts (maximum size 120 μm) are located within the primary gametogenic mesenteries and are separated by mesenteric cell cytoplasmic extensions. Sperm, maturing along radial rows, have a fairly round shape and contain a series of electron-dense vesicles in the apical nuclear region. A single mitochondrion flanks the nucleus. A peculiar cup-like electron-dense body, edged with regularly spaced electron-dense granules, is interposed between the nucleus and the tail, and delimits a central region that includes two centrioles. Cross-sections of the cup-like body reveal that the distal centriole has a pericentriolar system, consisting of nine arms arranged in a radial pattern. Each arm branches into three processes that are connected to the electron-dense granules. Indirect evidence of spawning is derived from the accumulation of sperm in the gastric cavity. This process takes place through the lysis of the cells bordering the mesenteries. Intact cells of this bordering layer appear to be involved in the phagocytosis of non-expelled gametes.  相似文献   

16.
Sperm cells are highly diversified in animals, and considerable research effort has focused on variation in sperm morphology among species. Surprisingly, little is known about intraspecific variation in sperm morphology. We analysed within‐ and between‐male variation in mature sperm traits in two brackish water populations of the pipefish Syngnathus abaster. Four morphometric parameters, such as the width and length of the head (including nucleus, and midpiece), length of flagellum and total sperm length were taken into account. The differences in all morphometric parameters analysed between populations were not statistically significant. Moreover, the multidimensional scaling analysis shows that (i) the two populations seem to be indistinguishable based on their spermatozoa and (ii) there is not polymorphism, being sperm not distinguishable into discrete classes both within a single male and between males of each populations. The latter datum does not seem to support the presence of polymorphic sperm in syngnathids. Both populations, however, exhibit a high variation in all sperm traits, both among individual sperm within an ejaculate and among males within each population. The relationship between sperm traits variability and the low selection pressure determined by the absence of postcopulatory sexual selection (i.e. absence of sperm competition) is discussed.  相似文献   

17.
18.
19.
In many species of animals, males normally produce parasperm (dimorphic sperm) along with eusperm (normal sperm) during spermatogenesis. In the present study, to clarify the role of parasperm of the non-copulatory sculpin Hemilepidotus gilberti, whose reproduction is characterized by polyandrous oviposition involving sneaking by neighboring territorial males, we observed the movements of parasperm. Parasperm could not move by themselves, but they were transported in solutions by passive movement due to collisions with actively swimming eusperm. In the viscous ovarian fluid (OF), which isolates eggs from seawater by covering them during spawning, parasperm did not exhibit any movement. However, they could be transported by eusperm movement in solutions with dissolved OF, partly because the viscosity of the fluid become lower. And then, in some solutions parasperm formed lumps. Lump formation of parasperm was also observed at the boundary surface of an egg mass where OF contacted seawater. Eusperm added experimentally to a solution in which parasperm were forming lumps were engulfed in the lumps and never escaped. Thus, lump formation of parasperm would be obstacles for the later arriving eusperm. Although lumps formed against both kin and non-kin eusperm, parasperm are thought to be available to overcome sperm competition which would occur during spawning that involves sneaking being almost concurrent with lump formation. The territorial male eusperm reach the eggs while his parasperm hinder other males' eusperm from reaching the eggs. Thus, we concluded that parasperm of H. gilberti play a role on protection of paternity by blocking rival eusperm physically from approaching eggs.  相似文献   

20.
The morphology of the genital apparatus of two batrachoid species, Opsanus tau and Porichthys notatus , was studied. The anatomical organization of the female reproductive apparatus is similar in both species but differences are observed in the rhythm of gametogenesis with individual oocyte production asynchronous in O. tau and group synchronous in P. notatus. The male reproductive apparatus is similarly organized in the two species, with both showing enlongated testes with an efferent duct system, two main testicular ducts, a common sperm duct, and a pair of multi-channel accessory structures. The sperm transport system consisting of the efferent duct system, main testicular ducts, and sperm duct is more developed in P. notatus and only in this species does it secrete sialoglycoproteins. Male accessory organs also secrete sialoglycoprotein in both species, but they appear more developed in O. tau. Intraspecific variability in development of accessory structures and mucin secretion was also observed between the two male morphs of P. notatus. Type I males, which build nests and perform parental care to eggs and fry, have larger accessory organs and more abundant secretion than type II males, which adopt opportunistic spawning tactics. The possible role played by mucins as components of the seminal fluid, in both species, and their inter-and intraspecific variability are discussed in the light of the reproductive biology and the presence of alternative male mating tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号