首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both calcium and 1,25(OH)(2)D promote the differentiation of keratinocytes in vitro. The autocrine or paracrine production of 1,25(OH)(2)D by keratinocytes combined with the critical role of the epidermal calcium gradient in regulating keratinocyte differentiation in vivo suggest the physiologic importance of this interaction. The interactions occur at a number of levels. Calcium and 1,25(OH)(2)D synergistically induce involucrin, a protein critical for cornified envelope formation. The involucrin promoter contains an AP-1 site essential for calcium and 1,25(OH)(2)D induction and an adjacent VDRE essential for 1,25(OH)(2)D but not calcium induction. Calcium regulates coactivator complexes that bind to the Vitamin D receptor (VDR). Nuclear extracts from cells grown in low calcium contain an abundance of DRIP(205), whereas calcium induced differentiation leads to reduced DRIP(205) and increased SRC 3 which replaces DRIP in its binding to the VDR. In vivo models support the importance of 1,25(OH)(2)D-calcium interactions in epidermal differentiation. The epidermis of 1alphaOHase null mice fails to form a normal calcium gradient, has reduced expression of proteins critical for barrier function, and shows little recovery of the permeability barrier when disrupted. Thus in vivo and in vitro, calcium and 1,25(OH)(2)D interact at multiple levels to regulate epidermal differentiation.  相似文献   

2.
3.
Nephrin plays a key role in maintaining the structure of the slit diaphragm in the glomerular filtration barrier. Our previous studies have demonstrated potent renoprotective activity for 1,25-dihydroxyvitamin D (1,25(OH)(2)D(3)). Here we showed that in podocytes 1,25(OH)(2)D(3) markedly stimulated nephrin mRNA and protein expression. ChIP scan of the 6-kb 5' upstream region of the mouse nephrin gene identified several putative vitamin D response elements (VDREs), and EMSA confirmed that the VDRE at -312 (a DR4-type VDRE) could be bound by vitamin D receptor (VDR)/retinoid X receptor. Luciferase reporter assays of the proximal nephrin promoter fragment (-427 to +173) showed strong induction of luciferase activity upon 1,25(OH)(2)D(3) treatment, and the induction was abolished by mutations within -312VDRE. ChIP assays showed that, upon 1,25(OH)(2)D(3) activation, VDR bound to this VDRE leading to recruitment of DRIP205 and RNA polymerase II and histone 4 acetylation. Treatment of mice with a vitamin D analog induced nephrin mRNA and protein in the kidney, accompanied by increased VDR binding to the -312VDRE and histone 4 acetylation. 1,25(OH)(2)D(3) reversed high glucose-induced nephrin reduction in podocytes, and vitamin D analogs prevented nephrin decline in both type 1 and 2 diabetic mice. Together these data demonstrate that 1,25(OH)(2)D(3) stimulates nephrin expression in podocytes by acting on a VDRE in the proximal nephrin promoter. Nephrin up-regulation likely accounts for part of the renoprotective activity of vitamin D.  相似文献   

4.
Cell programs such as proliferation and differentiation involve the selective activation and repression of gene expression. The vitamin D receptor (VDR), through 1,25(OH)(2)D(3), controls the proliferation and differentiation of keratinocytes. Previously, we have identified two VDR binding coactivator complexes. In proliferating keratinocytes VDR bound preferentially to the DRIP complex, whereas in differentiated keratinocytes the SRC complex was preferred. We proposed that different coactivators are required for sequential gene regulation in the transition from proliferation to differentiation. Here we examined the roles of DRIP205 and SRC-3 in this transition. Silencing of DRIP205 and VDR caused hyperproliferation of keratinocytes, demonstrated by increased XTT and BrdU incorporation. SRC-3 silencing, on the other hand, did not have an effect on proliferation. In contrast, SRC-3 as well as DRIP205 and VDR silencing blocked keratinocyte differentiation as shown by decreased expression of keratin 1 and filaggrin. These results are consistent with the differential localization of DRIP205 and SRC-3 in skin. These results indicate that DRIP205 is required for keratinocyte proliferation. Both DRIP205 and SRC-3 are required for the keratinocyte differentiation. These results support the concept that the selective use of coactivators by VDR underlies the selective regulation of gene expression in keratinocyte proliferation and differentiation.  相似文献   

5.
The skin is the major source of Vitamin D(3) (cholecalciferol), and ultraviolet light (UV) is critical for its formation. Keratinocytes, the major cell in the epidermis, can further convert Vitamin D(3) to its hormonal form, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] (calcitriol). 1,25(OH)(2)D(3) in turn stimulates the differentiation of keratinocytes, raising the hope that 1,25(OH)(2)D(3) may prevent the development of malignancies in these cells. Skin cancers (squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanomas) are the most common cancers afflicting humans. UV exposure is linked to the incidence of these cancers-UV is thus good and bad for epidermal health. Our focus is on the mechanisms by which 1,25(OH)(2)D(3) regulates the differentiation of keratinocytes, and how this regulation breaks down in transformed cells. Skin cancers produce 1,25(OH)(2)D(3), contain ample amounts of the Vitamin D receptor (VDR), and respond to 1,25(OH)(2)D(3) with respect to induction of the 24-hydroxylase, but fail to differentiate in response to 1,25(OH)(2)D(3). Why not? The explanation may lie in the overexpression of the DRIP complex, which by interfering with the normal transition from DRIP to SRC as coactivators of the VDR during differentiation, block the induction of genes required for 1,25(OH)(2)D(3)-induced differentiation.  相似文献   

6.
7.
8.
9.
10.
11.
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] plays a critical role in maintaining calcium and phosphate homeostasis and bone formation but also exhibits antiproliferative activity on many cancer cells, including prostate cancer. We have shown that the antiproliferative actions of 1,25-(OH)2D3 in the LNCaP human prostate cancer cell line are mediated in part by induction of IGF binding protein-3 (IGFBP-3). The purpose of this study was to determine the molecular mechanism involved in 1,25-(OH)2D3 regulation of IGFBP-3 expression and to identify the putative vitamin D response element (VDRE) in the IGFBP-3 promoter. We cloned approximately 6 kb of the IGFBP-3 promoter sequence and demonstrated its responsiveness to 1,25-(OH)2D3 in transactivation assays. Computer analysis identified a putative VDRE between -3296/-3282 containing the direct repeat motif GGTTCA ccg GGTGCA that is 92% identical with the rat 24-hydroxylase distal VDRE. In EMSAs, the vitamin D receptor (VDR) showed strong binding to the putative IGFBP-3 VDRE in the presence of 1,25-(OH)2D3. Supershift assays confirmed the presence of VDR in the IGFBP-3 VDRE complex. Chromatin immunoprecipitation assay demonstrated that 1,25-(OH)2D3 recruited the VDR/retinoid X receptor heterodimer to the VDRE site in the natural IGFBP-3 promoter in intact cells. In transactivation assays, the putative VDRE coupled to a heterologous simian virus 40 promoter construct was induced 2-fold by 1,25-(OH)2D3. Mutations in the VDRE resulted in a loss of inducibility confirming the critical hexameric sequence. In conclusion, we have identified a functional VDRE in the distal region of the human IGFBP-3 promoter. The induction of IGFBP-3 by 1,25-(OH)2D3 appears to be directly mediated via VDR interaction with this VDRE.  相似文献   

12.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and transforming growth factor beta (TGFbeta) potently induce 5-lipoxygenase (5-LO) in myeloid cells. We analyzed vitamin D receptor (VDR) binding to putative vitamin D response elements within the 5-LO promoter and analyzed its function by reporter gene analysis. Binding of VDR and retinoid X receptor to the promoter region was shown in DNase I footprinting, electrophoretic mobility shift and chromatin immunoprecipitation assays. However, the identified VDR binding region did not mediate induction of reporter gene activity by 1,25(OH)(2)D(3)/TGFbeta, neither in the 5-LO promoter context nor with the thymidine kinase (tk) promoter. Insertion of the rat atrial natriuretic factor VDRE in reporter plasmids containing the 5-LO promoter diminished induction by 1,25(OH)(2)D(3)/TGFbeta as compared with the tk promoter. Similarly, low inductions were obtained when cells were transiently or stably transfected with constructs containing various 5-LO promoter regions. Concerning basal promoter activity, we identified a positive regulatory region (-779 to -229), which includes the VDR binding region, in 5-LO-positive MonoMac6 cells. In summary, the VDR/RXR complex binds to putative VDREs in the 5-LO promoter, but other sequences outside the 5-LO promoter seem to be responsible or additionally required for the prominent induction of 5-LO mRNA expression by 1,25(OH)(2)D(3) and TGFbeta.  相似文献   

13.
14.
15.
16.
17.
18.
The steroid hormone 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) regulates cell proliferation and differentiation. Intracellular calcium (Cai) concentrations play a crucial role in these events. From our previous studies, we have demonstrated a calcium receptor (CaR) in keratinocytes which appears to regulate the initial release of Cai from intracellular stores in response to extracellular calcium (Cao) and so is likely to participate in the differentiation process. In this study, we determined whether the ability of 1,25(OH)2D3 to enhance Ca++ -induced differentiation was mediated at least in part through changes in the CaR. Keratinocytes were grown in keratinocyte growth medium (KGM) with 0.03 mM, 0.1 mM, or 1.2 mM Ca and treated with 10(-8) M 1,25(OH)2D3 till harvest after 5, 7, 14, and 21 days. CaR mRNA levels were quantitated by polymerase chain reaction. The results were compared to the ability of 1,25(OH)2D3 to enhance calcium-stimulated increases in Cai. In cells grown in 0.03 mM Ca, the CaR mRNA levels decreased with time. 1,25(OH)2D3 stimulated the levels at 5 days and prevented the falloff over the subsequent 16 days. On the other hand, in cells grown in 0.1 or 1.2 mM Ca, the message levels remained high, and 1,25(OH)2D3 had no further effect. To study the functional relationship, we harvested cells after 5 and 7 days in culture following a 24 h treatment with 1,25(OH)2D3 or vehicle to measure the Cai response to 2 mM Cao. The preconfluent cells grown in 0.03 mM Ca showed a nearly twofold increase in the Cai response to Cao when pretreated with 1,25(OH)2D3, whereas the confluent cells and those grown in 1.2 mM Ca showed no enhancement by 1,25(OH)2D3. Studies with 45Ca influx into keratinocytes revealed that 1,25(OH)2D3 enhanced the influx in preconfluent and confluent cells when grown in KGM containing 0.03 mM Ca but not in cells grown in 1.2 mM calcium. We conclude that 1,25(OH)2D3 maintains the CaR mRNA levels in cells grown in 0.03 mM Ca, thus maintaining their responsiveness to Cao and so ensuring their ability to differentiate in response to the calcium signal.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号