首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Australian aborigines exhibit a number of alpha-globin cluster rearrangements involving both alpha- and zeta-globin genes. alpha+-Thalassemia (-alpha/) in this population is heterogeneous and includes the 3.7 types I, II, and III gene deletions. The alpha alpha alpha/ and zeta zeta zeta/ rearrangements are each found in association with two haplotypes, indicating origins from at least two separate DNA crossover events. Differences in alpha-globin cluster rearrangements and in haplotypes between Australian aborigines, Papua New Guinea highlanders and island Melanesians, are consistent with multiple colonizing events into Australia.  相似文献   

2.
Melanesian origin of Polynesian Y chromosomes   总被引:16,自引:0,他引:16  
BACKGROUND: Two competing hypotheses for the origins of Polynesians are the 'express-train' model, which supposes a recent and rapid expansion of Polynesian ancestors from Asia/Taiwan via coastal and island Melanesia, and the 'entangled-bank' model, which supposes a long history of cultural and genetic interactions among Southeast Asians, Melanesians and Polynesians. Most genetic data, especially analyses of mitochondrial DNA (mtDNA) variation, support the express-train model, as does linguistic and archaeological evidence. Here, we used Y-chromosome polymorphisms to investigate the origins of Polynesians. RESULTS: We analysed eight single nucleotide polymorphisms (SNPs) and seven short tandem repeat (STR) loci on the Y chromosome in 28 Cook Islanders from Polynesia and 583 males from 17 Melanesian, Asian and Australian populations. We found that all Polynesians belong to just three Y-chromosome haplotypes, as defined by unique event polymorphisms. The major Y haplotype in Polynesians (82% frequency) was restricted to Melanesia and eastern Indonesia and most probably arose in Melanesia. Coalescence analysis of associated Y-STR haplotypes showed evidence of a population expansion in Polynesians, beginning about 2,200 years ago. The other two Polynesian Y haplotypes were widespread in Asia but were also found in Melanesia. CONCLUSIONS: All Polynesian Y chromosomes can be traced back to Melanesia, although some of these Y-chromosome types originated in Asia. Together with other genetic and cultural evidence, we propose a new model of Polynesian origins that we call the 'slow-boat' model: Polynesian ancestors did originate from Asia/Taiwan but did not move rapidly through Melanesia; rather, they interacted with and mixed extensively with Melanesians, leaving behind their genes and incorporating many Melanesian genes before colonising the Pacific.  相似文献   

3.
A total of 630 haplotypes for the phenylalanine hydroxylase (PAH) gene locus were established in five groups of Polynesians comprising Samoans, Tongans, Cook Islanders, Maori, and Niueans. Considerable genetic continuity was demonstrated between these widely dispersed populations, since three common haplotypes (4, 1, and 7) constituted over 95% of alleles. A control group of individuals from Southeast Asia shared the same major haplotypes, 4, 1, and 7, with Polynesians. These data provide further support for the theories of genetic homogeneity and of Asian affinities of the Polynesian precursor populations. The absence of severe phenylketonuria (PKU) in both Polynesians and Southeast Asians is consistent with the lack of PAH haplotypes 2 and 3, on which the severe PKU mutants have arisen among Caucasians.  相似文献   

4.
Analysis of copy number variants of the duplicated alpha-, zeta-, and gamma-globin genes in eastern Polynesians revealed a high frequency of both triplicated-zeta-gene chromosomes and a specific alpha thalassemia deletion. This deletion and a novel restriction-enzyme-site polymorphism associated with a zeta zeta zeta chromosome are found only in Melanesians and Polynesians. Analysis of alpha-globin restriction-enzyme haplotypes indicated further similarities to Melanesians but suggested an additional non-Melanesian genetic component in eastern Polynesia. Several globin gene alleles showed evidence of marked frequency fluctuations due to genetic drift.  相似文献   

5.
Polynesians from five distinct island groups were studied with DNA probe alpha 3'HVR, a highly polymorphic VNTR (variable number of tandem repeats) minisatellite region associated with the alpha-globin gene cluster. Results showed a paucity of genetic heterozygosity together with clustering of alpha 3'HVR alleles with alpha-globin DNA haplotypes and alpha-globin gene rearrangements. This restricted diversity is consistent with population bottlenecks in the colonization of Polynesia.  相似文献   

6.
The European pond turtle, Emys orbicularis, inhabits a wide distribution area in the western Palaearctic. Polish populations of pond turtle represent the nominotypical subspecies Emys orbicularis orbicularis. The mitochondrial DNA haplotype (cytb gene) variation among 131 turtles from 26 locations in five regions of Poland was investigated. Five haplotypes belonging to three distinct lineages were identified. Two clades (I and II) were represented by two haplotypes each, while the other clade (IV) was represented by one haplotype. Three haplotypes were reported for the first time in E. orbicularis. The eastern part of Poland is inhabited exclusively by turtles bearing haplotype Ia. The remaining four sequence variants were recorded in western Poland where only the IIb haplotype is considered endemic. The distribution of the other haplotypes in western Poland could thus reflect past introductions or accidental releases. The authors regarded the two locations (Drzeczkowo and Karpicko) that were first included in the western Poland populations as autochthonous catchment areas of haplotype Ia.  相似文献   

7.
Summary Six polymorphic restriction enzyme sites in the beta-globin gene cluster were investigated in Yanomama Indians from the Amazon region of Brazil, using the polymerase chain reaction (PCR) technique. Four haplotypes were identified; the haplotype frequency distribution is similar to those reported for Polynesians, Micronesians and most Asian populations.  相似文献   

8.
The human settlement of the Pacific Islands represents one of the most recent major migration events of mankind. Polynesians originated in Asia according to linguistic evidence or in Melanesia according to archaeological evidence. To shed light on the genetic origins of Polynesians, we investigated over 400 Polynesians from 8 island groups, in comparison with over 900 individuals from potential parental populations of Melanesia, Southeast and East Asia, and Australia, by means of Y chromosome (NRY) and mitochondrial DNA (mtDNA) markers. Overall, we classified 94.1% of Polynesian Y chromosomes and 99.8% of Polynesian mtDNAs as of either Melanesian (NRY-DNA: 65.8%, mtDNA: 6%) or Asian (NRY-DNA: 28.3%, mtDNA: 93.8%) origin, suggesting a dual genetic origin of Polynesians in agreement with the "Slow Boat" hypothesis. Our data suggest a pronounced admixture bias in Polynesians toward more Melanesian men than women, perhaps as a result of matrilocal residence in the ancestral Polynesian society. Although dating methods are consistent with somewhat similar entries of NRY/mtDNA haplogroups into Polynesia, haplotype sharing suggests an earlier appearance of Melanesian haplogroups than those from Asia. Surprisingly, we identified gradients in the frequency distribution of some NRY/mtDNA haplogroups across Polynesia and a gradual west-to-east decrease of overall NRY/mtDNA diversity, not only providing evidence for a west-to-east direction of Polynesian settlements but also suggesting that Pacific voyaging was regular rather than haphazard. We also demonstrate that Fiji played a pivotal role in the history of Polynesia: humans probably first migrated to Fiji, and subsequent settlement of Polynesia probably came from Fiji.  相似文献   

9.
beta-Globin gene haplotypes obtained in Polynesian Samoans were similar to those described in Southern Chinese. An atypical HindIII restriction fragment length polymorphism detected with pRK29, a 3' beta-globin gene probe, was present at a gene frequency of 7% in Samoans. Haplotype patterns suggest that this polymorphism may have arisen by 1 or 2 mutational events. DNA haplotypes derived from the beta-globin gene cluster confirm nuclear and mitochondrial DNA data that Polynesian precursor populations were East Asian in origin.  相似文献   

10.
The Mhc is a highly conserved gene region especially interesting to geneticists because of the rapid evolution of gene families found within it. High levels of Mhc genetic diversity often exist within populations. The chicken Mhc is the focus of considerable interest because of the strong, reproducible infectious disease associations found with particular Mhc-B haplotypes. Sequence data for Mhc-B haplotypes have been lacking thereby hampering efforts to systematically resolve which genes within the Mhc-B region contribute to well-defined Mhc-B-associated disease responses. To better understand the genetic factors that generate and maintain genomic diversity in the Mhc-B region, we determined the complete genomic sequence for 14 Mhc-B haplotypes across a region of 59 kb that encompasses 14 gene loci ranging from BG1 to BF2. We compared the sequences using alignment, phylogenetic, and genome profiling methods. We identified gene structural changes, synonymous and non-synonymous polymorphisms, insertions and deletions, and allelic gene rearrangements or exchanges that contribute to haplotype diversity. Mhc-B haplotype diversity appears to be generated by a number of mutational events. We found evidence that some Mhc-B haplotypes are derived by whole- and partial-allelic gene conversion and homologous reciprocal recombination, in addition to nucleotide mutations. These data provide a framework for further analyses of disease associations found among these 14 haplotypes and additional haplotypes segregating and evolving in wild and domesticated populations of chickens.  相似文献   

11.
Analyses of mitochondrial DNA (mtDNA) and nonrecombining Y chromosome (NRY) variation in the same populations are sometimes concordant but sometimes discordant. Perhaps the most dramatic example known of the latter concerns Polynesians, in which about 94% of Polynesian mtDNAs are of East Asian origin, while about 66% of Polynesian Y chromosomes are of Melanesian origin. Here we analyze on a genome-wide scale, to our knowledge for the first time, the origins of the autosomal gene pool of Polynesians by screening 377 autosomal short tandem repeat (STR) loci in 47 Pacific Islanders and compare the results with those obtained from 44 Chinese and 24 individuals from Papua New Guinea. Our data indicate that on average about 79% of the Polynesian autosomal gene pool is of East Asian origin and 21% is of Melanesian origin. The genetic data thus suggest a dual origin of Polynesians with a high East Asian but also considerable Melanesian component, reflecting sex-biased admixture in Polynesian history in agreement with the Slow Boat model. More generally, these results also demonstrate that conclusions based solely on uniparental markers, which are frequently used in population history studies, may not accurately reflect the history of the autosomal gene pool of a population.  相似文献   

12.
Y-chromosome-specific polymorphisms p49f-a/TaqI were studied in a sample of 68 French Polynesians, and five haplotypes were observed. Three of them were haplotypes characteristic of European ancestry. The mean haplotype (45.6%) in French Polynesia is haplotype XV, a typical western European haplotype. Such an elevated frequency of European haplotypes is due to male gene flow from Europeans in French Polynesia.  相似文献   

13.
We analyzed beta-globin gene cluster haplotypes and deletional alpha+-thalassemia (-alpha3.7kb) in 54 Babinga pygmy subjects from Congo-Brazzaville. The beta(S)-globin gene frequency was 0.065 and that of the deletional alpha-globin gene (-alpha3.7kb) was 0.29. Eighty-five percent of the beta(S) chromosomes and 13% of the beta(A) chromosomes were associated with the Bantu haplotype, 10% of beta(A) chromosomes with the Senegal haplotype, and the remaining beta chromosomes with atypical haplotypes. None of the chromosomes were of the Benin haplotype. These results are clearly of anthropological and evolutionary interest. They also support earlier observations that alpha+-thalassemia is prevalent at a high frequency in African populations.  相似文献   

14.
Alpha-globin gene cluster haplotypes were determined in Southern African San and negroid populations. Significant differences (P less than .01) between the two groups were found at three of the nine loci in the cluster. The most striking difference, however, was the relatively low level of variation found in the San (alpha alpha)-associated haplotypes and the high level in the SA blacks. This trend was also observed for the 3' hyper-variable region. Nineteen different haplotypes were identified among the 36 haplotypes studied in the black population, but only seven different ones were found among the 37 haplotypes in the San; five were common to both populations. The common San haplotype, (+--MPZ+---), had a frequency of .57 in the San and .11 in the black population; the common SA black haplotype, (---MZ----), occurred at a frequency of .17 but was absent in the San. In the SA black population significant linkage disequilibrium is present between five of the RFLP loci, including the extreme 5' and 3' markers, confirming the absence of a recombination hot spot in the alpha-globin gene cluster.  相似文献   

15.
Rearrangements involving genes of the alpha- and beta-globin loci were frequently detected in DNA from Polynesians. A founder effect and genetic drift occurring 2,000-3,000 years ago as Polynesians migrated eastward across the Pacific is proposed as the likely mechanism for these genetic changes that include deletions or additions of alpha-, gamma-, and zeta-globin genes and an unusual restriction fragment length polymorphism (RFLP) associated with the zeta gene. Preliminary data show different frequencies for gene rearrangements between island groups. Further study of these differences should provide additional information on the prehistory of Polynesians.  相似文献   

16.
We have used Y-chromosomal polymorphisms to trace paternal lineages in Polynesians by use of samples previously typed for mtDNA variants. A genealogical approach utilizing hierarchical analysis of eight rare-event biallelic polymorphisms, seven microsatellite loci, and internal structural analysis of the hypervariable minisatellite, MSY1, has been used to define three major paternal-lineage clusters in Polynesians. Two of these clusters, both defined by novel MSY1 modular structures and representing 55% of the Polynesians studied, are also found in coastal Papua New Guinea. Reduced Polynesian diversity, relative to that in Melanesians, is illustrated by the presence of several examples of identical MSY1 codes and microsatellite haplotypes within these lineage clusters in Polynesians. The complete lack of Y chromosomes having the M4 base substitution in Polynesians, despite their prevalence (64%) in Melanesians, may also be a result of the multiple bottleneck events during the colonization of this region of the world. The origin of the M4 mutation has been dated by use of two independent methods based on microsatellite-haplotype and minisatellite-code diversity. Because of the wide confidence limits on the mutation rates of these loci, the M4 mutation cannot be conclusively dated relative to the colonization of Polynesia, 3,000 years ago. The other major lineage cluster found in Polynesians, defined by a base substitution at the 92R7 locus, represents 27% of the Polynesians studied and, most probably, originates in Europe. This is the first Y-chromosomal evidence of major European admixture with indigenous Polynesian populations and contrasts sharply with the picture given by mtDNA evidence.  相似文献   

17.
HLA class I molecules and killer cell immunoglobulin-like receptors (KIR) form a diverse system of ligands and receptors that individualize human immune systems in ways that improve the survival of individuals and populations. Human settlement of Oceania by island-hopping East and Southeast Asian migrants started ~3,500 years ago. Subsequently, New Zealand was reached ~750 years ago by ancestral Māori. To examine how this history impacted KIR and HLA diversity, and their functional interaction, we defined at high resolution the allelic and haplotype diversity of the 13 expressed KIR genes in 49 Māori and 34 Polynesians. Eighty KIR variants, including four ‘new’ alleles, were defined, as were 35 centromeric and 22 telomeric KIR region haplotypes, which combine to give >50 full-length KIR haplotypes. Two new and divergent variant KIR form part of a telomeric KIR haplotype, which appears derived from Papua New Guinea and was probably obtained by the Asian migrants en route to Polynesia. Māori and Polynesian KIR are very similar, but differ significantly from African, European, Japanese, and Amerindian KIR. Māori and Polynesians have high KIR haplotype diversity with corresponding allotype diversity being maintained throughout the KIR locus. Within the population, each individual has a unique combination of HLA class I and KIR. Characterizing Māori and Polynesians is a paucity of HLA-B allotypes recognized by KIR. Compensating for this deficiency are high frequencies (>50 %) of HLA-A allotypes recognized by KIR. These HLA-A allotypes are ones that modern humans likely acquired from archaic humans at a much earlier time.  相似文献   

18.
We have explored the use of multilocus microsatellite haplotypes to study introgression from cultivated (Malus domestica) into wild apple (Malus sylvestris), and to study gene flow among remnant populations of M. sylvestris. A haplotype consisted of alleles at microsatellite loci along one chromosome. As destruction of haplotypes through recombination occurs much faster than loss of alleles due to genetic drift, the lifespan of a multilocus haplotype is much shorter than that of the underlying alleles. When different populations share the same haplotype, this may indicate recent gene flow between populations. Similarly, haplotypes shared between two species would be a strong signal for introgression. As the expected lifespan of a haplotype depends on the strength of the linkage, the length [in centiMorgans (cM)] of the haplotype shared contains information on the number of generations passed. This application of shared haplotypes is distinct from using haplotype-sharing to detect association between markers and a certain trait. We inferred haplotypes for four to eight microsatellite loci on Linkage Group 10 of apple from genotype data using the program phase, and then identified those haplotypes shared between populations and species. Compared with a Bayesian analysis of unlinked microsatellite loci using the program structure, haplotype-sharing detected a partially different set of putative hybrids. Cultivated haplotypes present in M. sylvestris were short (< 1.5 cM), indicating that introgression had taken place many generations ago, except for two Belgian plants that contained a haplotype of 47.1 cM, indicating recent introgression. In the estimation of gene flow, F(ST) based on unlinked loci indicated small (0.032-0.058) but statistically significant differentiation between some populations only. However, various M. sylvestris haplotypes were shared in nearly all pairwise comparisons of populations, and their length indicated recent gene flow. Hence, all Dutch populations should be considered as one conservation unit. The added value of using sharing of multilocus microsatellite haplotypes as a source of population genetic information is discussed.  相似文献   

19.
Molecular basis for the defective expression of the mouse Ew17 beta gene   总被引:1,自引:0,他引:1  
Four of the eleven independent H-2 haplotypes of inbred mouse strains and approximately 15% of wild mouse chromosomes 17 fail to express the E alpha E beta class II histocompatibility (Ia) Ag. These E- haplotypes are defective in the expression of the E alpha and/or the E beta chain. None of the E beta defects has previously been described at the molecular level. In this study, we report the molecular basis for the defective expression of the E beta gene from the w17 haplotype of the H-2 congenic strain B10.CAS2, derived from wild Mus musculus castaneus. Comparison of the Ew17 beta genomic sequence to those of the functional Eb beta and Ed beta genes reveals a single base insertion in the RNA donor splice site of the first intron. By DNA shuffling, we have corrected the single base mutation, and we show by FACS analysis and 2-D PAGE of immunoprecipitates that the corrected Ew17 beta is expressed in L cells when co-transfected with an Ed alpha gene. Conversely, an Eb beta gene construct containing the mutant RNA splice site from Ew17 beta is not expressed. We conclude that the single base insertion in the first RNA splice donor site is the sole molecular defect in the Ew17 beta gene.  相似文献   

20.
Retracing the trajectories of past genetic events is crucial to understand the structure of the genome, both in individuals and across populations. A haplotype describes a string of polymorphic sites along a DNA segment. Haplotype diversity is due to mutations creating new variants, and to recombinations and gene conversions that mix and redistribute these variants among individual chromosomes in populations. A number of studies have revealed a relatively simple pattern of haplotype diversity in the human genome, dominated by a few common haplotypes representing founder ancestral ones. New haplotypes are usually rare and have a limited geographic distribution. We propose a method to derive a new haplotype from a set of putative ancestral haplotypes, once mutations in place, through minimal recombination and gene conversion pathways. We describe classes of pathways that represent the whole set of minimal pathways leading to a new haplotype. We show that obtaining this set of pathways can be represented as a problem of finding "secondary structures" of minimum energy. We present a polynomial algorithm solving this folding problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号