首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《PLoS biology》2021,19(4)
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho0 cells rescued mitochondrial function and increased Rho0 cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.

This study shows that neural stem cells are able to transfer functional mitochondria via extracellular vesicles to target cells both in vitro and in vivo, suggesting that functional mitochondrial transfer via extracellular vesicles is a signaling mechanism used by neural stem cells to modulate the physiology and metabolism of target cells.  相似文献   

2.
3.
Extracellular vesicles (EVs) contain specific proteins, lipids, and nucleic acids that can be passed to other cells as signal molecules to alter their function. However, there are many problems and challenges in the conversion and clinical application of EVs. Storage and protection of EVs is one of the issues that need further research. To adapt to potential clinical applications, this type of problem must be solved. This review summarizes the storage practices of EVs in recent years, and explains the impact of temperature on the quality and stability of EVs during storage based on current research, and explains the potential mechanisms involved in this effect as much as possible.  相似文献   

4.
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.  相似文献   

5.
Extracellular vesicles (EVs) are mediators of intercellular communication by transporting cargo containing proteins, lipids, mRNA, and miRNA. There is increasing evidence that EVs have various roles in regulating migration, invasion, stemness, survival, and immune functions. Previously, we have found that EVs from Kaposi’s sarcoma-associated herpesvirus (KSHV)-infected human endothelial cells have the potential to activate the complement system. Although many studies have shown that the physical properties of EVs can be changed by their storage condition, there have been few studies for the stability of biological activity of EVs in various storage conditions. In this study, we investigated various conditions to identify the best conditions to store EVs with functional stability for 25 d. Furthermore, the correlation between the function and other characteristics of EVs, including the expression of EV markers, size distribution, and particle number, were also analyzed. Our results demonstrated that storage temperature is an important factor to maintain the activity of EVs and would be useful information for basic research and clinical application using EVs.  相似文献   

6.
线粒体是真核细胞中重要的细胞器,是高等生命体赖以生存的能量来源.线粒体异常可引起细胞甚至器官发生病变,越来越多的疾病被证实与线粒体功能障碍有关.线粒体移植是从患者正常组织分离线粒体然后注入线粒体损伤或缺失的部位,使损伤细胞得到救治、器官功能得以恢复的全新干预技术.线粒体移植作为一种新兴治疗方案在一些疾病干预的基础研究中崭露头角,尤其是在保护心脏缺血再灌注损伤领域已经发展到临床试验阶段.本文从线粒体起源出发,总结了仍处于实验阶段的几种线粒体移植方法,概述了线粒体移植在脑缺血引起神经元损伤保护领域、心肌缺血再灌注损伤保护领域和肿瘤治疗领域的研究进展,从分子层面探讨了线粒体损伤及线粒体移植修复的机理,并提出研发患者专属的"线粒体移植治疗生物制剂"的设想,旨在为线粒体缺陷有关疾病的治疗研究提供新的视角.  相似文献   

7.
The mitochondrial free radical theory of aging suggests that accumulating oxidative damage to mitochondria and mitochondrial DNA (mtDNA) plays a central role in aging. Circulating cell‐free mtDNA (ccf‐mtDNA) isolated from blood may be a biomarker of disease. Extracellular vesicles (EVs) are small (30–400 nm), lipid‐bound vesicles capable of shuttling proteins, nucleic acids, and lipids as part of intercellular communication systems. Here, we report that a portion of ccf‐mtDNA in plasma is encapsulated in EVs. To address whether EV mtDNA levels change with human age, we analyzed mtDNA in EVs from individuals aged 30–64 years cross‐sectionally and longitudinally. EV mtDNA levels decreased with age. Furthermore, the maximal mitochondrial respiration of cultured cells was differentially affected by EVs from old and young donors. Our results suggest that plasma mtDNA is present in EVs, that the level of EV‐derived mtDNA is associated with age, and that EVs affect mitochondrial energetics in an EV age‐dependent manner.  相似文献   

8.
Extracellular vesicles (EVs) have emerged as important regulators of inter‐cellular and inter‐organ communication, in part via the transfer of their cargo to recipient cells. Although circulating EVs have been previously studied as biomarkers of aging, how circulating EVs change with age and the underlying mechanisms that contribute to these changes are poorly understood. Here, we demonstrate that aging has a profound effect on the circulating EV pool, as evidenced by changes in concentration, size, and cargo. Aging also alters particle function; treatment of cells with EV fractions isolated from old plasma reduces macrophage responses to lipopolysaccharide, increases phagocytosis, and reduces endothelial cell responses to vascular endothelial growth factor compared to cells treated with young EV fractions. Depletion studies indicate that CD63+ particles mediate these effects. Treatment of macrophages with EV‐like particles revealed that old particles increased the expression of EV miRNAs in recipient cells. Transfection of cells with microRNA mimics recapitulated some of the effects seen with old EV‐like particles. Investigation into the underlying mechanisms using bone marrow transplant studies revealed circulating cell age does not substantially affect the expression of aging‐associated circulating EV miRNAs in old mice. Instead, we show that cellular senescence contributes to changes in particle cargo and function. Notably, senolytic treatment of old mice shifted plasma particle cargo and function toward that of a younger phenotype. Collectively, these results demonstrate that senescent cells contribute to changes in plasma EVs with age and suggest a new mechanism by which senescent cells can affect cellular functions throughout the body.  相似文献   

9.
Endothelial cells in the vascular system are constantly subjected to the frictional force of shear stress due to the pulsatile nature of blood flow. Although several proteins form part of the shear stress mechano-sensing pathway, the identification of mechano-transducing pathways is largely unknown. Given the increasing evidence for a signaling function of mitochondria in endothelial cells, the aim of this study was to investigate their role as mechano-sensor organelles during laminar shear stress (LSS). We demonstrated that LSS activates intracellular signaling pathways that modulate not only mitochondrial dynamics but also mitochondrial function. At early time points of LSS, the fission-related protein Drp1 was recruited from the cytosol to mitochondria and activated mitochondrial fission. LSS-dependent increase in intracellular Ca2 + concentration was indispensable for mitochondrial fission. As alterations in mitochondrial dynamics have been related to changes in bioenergetics profiles, we studied mitochondrial function after LSS. We found that LSS decreased respiration rate, increased mitochondrial membrane potential and promoted the mitochondrial generation of ROS with the subsequent oxidation and activation of the antioxidant enzyme PRX3. Our data support a novel and active role for mitochondria in endothelial cells as active players, able to transduce the mechanical force of shear stress in the vascular endothelium into a biological response.  相似文献   

10.
Iron homeostasis is crucial for maintaining proper cellular function, and its disruption is considered one of the pathogenic mechanisms underlying musculoskeletal diseases. Under conditions of oxidative stress, the accumulation of cellular iron overload and lipid peroxidation can lead to ferroptosis. Extracellular vesicles (EVs), serving as mediators in the cell-to-cell communication, play an important role in regulating the outcome of cell ferroptosis. Growing evidence has proven that EV biogenesis and secretion are tightly associated with cellular iron export. Furthermore, different sources of EVs deliver diverse cargoes to bring about phenotypic changes in the recipient cells, either activating or inhibiting ferroptosis. Thus, delivering therapies targeting ferroptosis through EVs may hold significant potential for treating musculoskeletal diseases. This review aims to summarize current knowledge on the role of EVs in iron homeostasis and ferroptosis, as well as their therapeutic applications in musculoskeletal diseases, and thereby provide valuable insights for both research and clinical practice.  相似文献   

11.
Extracellular vesicles (EVs) are nanosized, membranous vesicles released by almost all types of cells. Extracellular vesicles can be classified into distinct subtypes according to their sizes, origins and functions. Extracellular vesicles play important roles in intercellular communication through the transfer of a wide spectrum of bioactive molecules, contributing to the regulation of diverse physiological and pathological processes. Recently, it has been established that EVs mediate foetal‐maternal communication across gestation. Abnormal changes in EVs have been reported to be critically involved in pregnancy‐related diseases. Moreover, EVs have shown great potential to serve as biomarkers for the diagnosis of pregnancy‐related diseases. In this review, we discussed about the roles of EVs in normal pregnancy and how changes in EVs led to complicated pregnancy with an emphasis on their values in predicting and monitoring of pregnancy‐related diseases.  相似文献   

12.
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.  相似文献   

13.
Chronic hypoxia (CH) occurs under certain physiological or pathological conditions, including in people who reside at high altitude or suffer chronic cardiovascular or pulmonary diseases. As mitochondria are the predominant oxygen-consuming organelles to generate ATP through oxidative phosphorylation in cells, their responses, through structural or molecular modifications, to limited oxygen supply play an important role in the overall functional adaptation to hypoxia. Here, we report the adaptive mitochondrial ultrastructural modifications and the functional impacts in a recently generated hypoxia-adapted Drosophila melanogaster strain that survives severe, otherwise lethal, hypoxic conditions. Using electron tomography, we discovered increased mitochondrial volume density and cristae abundance, yet also cristae fragmentation and a unique honeycomb-like structure in the mitochondria of hypoxia-adapted flies. The homeostatic levels of adenylate and energy charge were similar between hypoxia-adapted and naïve control flies and the hypoxia-adapted flies remained active under severe hypoxia as quantified by negative geotaxis behavior. The equilibrium ATP level was lower in hypoxia-adapted flies than those of the naïve controls tested under severe hypoxia that inhibited the motion of control flies. Our results suggest that the structural rearrangement in the mitochondria of hypoxia-adapted flies may be an important adaptive mechanism that plays a critical role in preserving adenylate homeostasis and metabolism as well as muscle function under chronic hypoxic conditions.  相似文献   

14.
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.  相似文献   

15.
Mitochondria are highly specialised organelles required for key cellular processes including ATP production through cellular respiration and controlling cell death via apoptosis. Unlike other organelles, mitochondria contain their own DNA genome which encodes both protein and RNA required for cellular respiration. Each cell may contain hundreds to thousands of copies of the mitochondrial genome, which is essential for normal cellular function – deviation of mitochondrial DNA (mtDNA) copy number is associated with cellular ageing and disease. Furthermore, mtDNA lesions can arise from both endogenous or exogenous sources and must either be tolerated or corrected to preserve mitochondrial function. Importantly, replication of damaged mtDNA can lead to stalling and introduction of mutations or genetic loss, mitochondria have adapted mechanisms to repair damaged DNA. These mechanisms rely on nuclear-encoded DNA repair proteins that are translocated into the mitochondria.Despite the presence of many known nuclear DNA repair proteins being found in the mitochondrial proteome, it remains to be established which DNA repair mechanisms are functional in mammalian mitochondria. Here, we summarise the existing and emerging research, alongside examining proteomic evidence, demonstrating that mtDNA damage can be repaired using Base Excision Repair (BER), Homologous Recombination (HR) and Microhomology-mediated End Joining (MMEJ). Critically, these repair mechanisms do not operate in isolation and evidence for interplay between pathways and repair associated with replication is discussed. Importantly, characterising non-canonical functions of key proteins and understanding the bespoke pathways used to tolerate, repair or bypass DNA damage will be fundamental in fully understanding the causes of mitochondrial genome mutations and mitochondrial dysfunction.  相似文献   

16.
由于线粒体能敏感地感受机体内氧浓度的变化,缺氧时会影响线粒体氧化磷酸化过程中电子传递链的正常功能,抑制ATP生成,产生大量活性氧(ROS)。ROS蓄积导致氧化损伤细胞内脂质、DNA和蛋白质等大分子物质,线粒体肿胀,通透性转换孔开放,释放细胞色素C等促凋亡因子,最终严重影响细胞的存活。因此这些功能异常或受损线粒体是缺氧应激状态下细胞是否存活的危险因素,及时清除这些线粒体,对维持线粒体质量、数量及细胞稳态具有重要意义。线粒体自噬是近年来发现的细胞适应缺氧的一种防御性代谢过程,它通过自噬途径选择性清除损伤、衰老和过量产生ROS的线粒体,促进线粒体更新和循环利用,确保细胞内线粒体功能稳定,保护缺氧应激下细胞的正常生长发挥重要的调节作用。本文就线粒体自噬在缺氧条件下发生过程、参与相关蛋白及调节机制等方面研究进行了综述。  相似文献   

17.
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.  相似文献   

18.
胞外囊泡(EVs)是细胞旁分泌产生的一种亚细胞成分,实质上是一组纳米级颗粒。它是双层膜结合型囊泡,内含蛋白质、核酸等活性成分。EVs在细胞间通过转移携带的信号分子而获得重要的地位。目前关于EVs在体外和体内的研究中对T细胞的调控能力引起了人们广泛的兴趣。在大多数研究中干细胞被报道能够抑制T细胞的增殖、活化和分化,在极少数研究中也发现干细胞具有增强T细胞免疫反应的作用。事实上所有的细胞类型均能释放EVs,包括干/祖/前体细胞。EVs被认为是细胞间交流的一种新机制,具有与干/祖细胞等亲代细胞相似的免疫调控作用。本综述是概述干/祖细胞来源的EVs对T细胞调控作用及可能的机制。  相似文献   

19.
细胞外囊泡(extracellular vesicles, EVs)是细胞主动释放的膜结合颗粒。在原核生物和真核生物中,EVs被认为是细胞间进行信息交流的一种方式。EVs具有携带蛋白质、脂质和核酸等生物大分子的能力,可以影响亲本细胞和受体细胞的不同生理功能。其中,EVs携带的microRNA研究报道最多,在生物体生理功能方面发挥着重要作用。卵泡在发育过程中,只有少数卵泡可以充分发育、成熟、排卵,大多数卵泡在发育的不同阶段发生闭锁。在卵泡发育的整个过程中,每一阶段的变化以及卵泡闭锁调控机制还不完全清楚。本文在总结EVs类型、特性、分离方法及用途的基础上,从不同细胞因子、激素方面重点论述了卵泡液中EVs携带的microRNA是如何调控卵泡闭锁,同时对卵泡液EVs携带的microRNA在生殖调控和生殖疾病诊断方面的研究前景进行了展望,对于卵泡发育调控研究以及有效利用研究具有一定参考意义。  相似文献   

20.
Brain computation is metabolically expensive and requires the supply of significant amounts of energy. Mitochondria are highly specialized organelles whose main function is to generate cellular energy. Due to their complex morphologies, neurons are especially dependent on a set of tools necessary to regulate mitochondrial function locally in order to match energy provision with local demands. By regulating mitochondrial transport, neurons control the local availability of mitochondrial mass in response to changes in synaptic activity. Neurons also modulate mitochondrial dynamics locally to adjust metabolic efficiency with energetic demand. Additionally, neurons remove inefficient mitochondria through mitophagy. Neurons coordinate these processes through signalling pathways that couple energetic expenditure with energy availability. When these mechanisms fail, neurons can no longer support brain function giving rise to neuropathological states like metabolic syndromes or neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号