首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mosaic animals have provided the platform for many fundamental discoveries in developmental biology, cell biology, and other fields. Techniques to produce mosaic animals by mitotic recombination have been extensively developed in Drosophila melanogaster but are less common for other laboratory organisms. Here, we report mosaic analysis by gRNA-induced crossing-over (MAGIC), a new technique for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9. MAGIC efficiently produces mosaic clones in both somatic tissues and the germline of Drosophila. Further, by developing a MAGIC toolkit for 1 chromosome arm, we demonstrate the method’s application in characterizing gene function in neural development and in generating fluorescently marked clones in wild-derived Drosophila strains. Eliminating the need to introduce recombinase-recognition sites into the genome, this simple and versatile system simplifies mosaic analysis in Drosophila and can in principle be applied in any organism that is compatible with CRISPR/Cas9.

Analysis of mosaic animals has been crucial in developmental and cell biology; this study describes a versatile, simple, and likely widely-applicable technique, MAGIC (mosaic analysis by gRNA-induced crossing-over), for generating mosaic animals based on DNA double-strand breaks produced by CRISPR/Cas9.  相似文献   

2.
Initiation of DNA replication is tightly controlled during the cell cycle to maintain genome integrity. In order to directly study this control we have previously established a cell-free system from human cells that initiates semi-conservative DNA replication. Template nuclei are isolated from cells synchronized in late G1 phase by mimosine. We have now used DNA combing to investigate initiation and further progression of DNA replication forks in this human in vitro system at single molecule level. We obtained direct evidence for bidirectional initiation of divergently moving replication forks in vitro. We assessed quantitatively replication fork initiation patterns, fork movement rates and overall fork density. Individual replication forks progress at highly heterogeneous rates (304 ± 162 bp/min) and the two forks emanating from a single origin progress independently from each other. Fork progression rates also change at the single fork level, suggesting that replication fork stalling occurs. DNA combing provides a powerful approach to analyse dynamics of human DNA replication in vitro.  相似文献   

3.
Tumor suppressor PTEN regulates cellular activities and controls genome stability through multiple mechanisms. In this study, we report that PTEN is necessary for the protection of DNA replication forks against replication stress. We show that deletion of PTEN leads to replication fork collapse and chromosomal instability upon fork stalling following nucleotide depletion induced by hydroxyurea. PTEN is physically associated with replication protein A 1 (RPA1) via the RPA1 C-terminal domain. STORM and iPOND reveal that PTEN is localized at replication sites and promotes RPA1 accumulation on replication forks. PTEN recruits the deubiquitinase OTUB1 to mediate RPA1 deubiquitination. RPA1 deletion confers a phenotype like that observed in PTEN knockout cells with stalling of replication forks. Expression of PTEN and RPA1 shows strong correlation in colorectal cancer. Heterozygous disruption of RPA1 promotes tumorigenesis in mice. These results demonstrate that PTEN is essential for DNA replication fork protection. We propose that RPA1 is a target of PTEN function in fork protection and that PTEN maintains genome stability through regulation of DNA replication.  相似文献   

4.
5.
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts—Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe—also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10−8, which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.  相似文献   

6.
Replication fork stalling and collapse is a major source of genome instability leading to neoplastic transformation or cell death. Such stressed replication forks can be conservatively repaired and restarted using homologous recombination (HR) or non-conservatively repaired using micro-homology mediated end joining (MMEJ). HR repair of stressed forks is initiated by 5’ end resection near the fork junction, which permits 3’ single strand invasion of a homologous template for fork restart. This 5’ end resection also prevents classical non-homologous end-joining (cNHEJ), a competing pathway for DNA double-strand break (DSB) repair. Unopposed NHEJ can cause genome instability during replication stress by abnormally fusing free double strand ends that occur as unstable replication fork repair intermediates. We show here that the previously uncharacterized Exonuclease/Endonuclease/Phosphatase Domain-1 (EEPD1) protein is required for initiating repair and restart of stalled forks. EEPD1 is recruited to stalled forks, enhances 5’ DNA end resection, and promotes restart of stalled forks. Interestingly, EEPD1 directs DSB repair away from cNHEJ, and also away from MMEJ, which requires limited end resection for initiation. EEPD1 is also required for proper ATR and CHK1 phosphorylation, and formation of gamma-H2AX, RAD51 and phospho-RPA32 foci. Consistent with a direct role in stalled replication fork cleavage, EEPD1 is a 5’ overhang nuclease in an obligate complex with the end resection nuclease Exo1 and BLM. EEPD1 depletion causes nuclear and cytogenetic defects, which are made worse by replication stress. Depleting 53BP1, which slows cNHEJ, fully rescues the nuclear and cytogenetic abnormalities seen with EEPD1 depletion. These data demonstrate that genome stability during replication stress is maintained by EEPD1, which initiates HR and inhibits cNHEJ and MMEJ.  相似文献   

7.
8.
The integrity of the genome is threatened by DNA damage that blocks the progression of replication forks. Little is known about the genomic locations of replication fork stalling, and its determinants and consequences in vivo. Here we show that bulky DNA damaging agents induce localized fork stalling at yeast replication origins, and that localized stalling is dependent on proximal origin activity and is modulated by the intra-S-phase checkpoint. Fork stalling preceded the formation of sister chromatid junctions required for bypassing DNA damage. Despite DNA adduct formation, localized fork stalling was abrogated at an origin inactivated by a point mutation and prominent stalling was not detected at naturally-inactive origins in the replicon. The intra-S-phase checkpoint contributed to the high-level of fork stalling at early origins, while checkpoint inactivation led to initiation, localized stalling and chromatid joining at a late origin. Our results indicate that replication forks initially encountering a bulky DNA adduct exhibit a dual nature of stalling: a checkpoint-independent arrest that triggers sister chromatid junction formation, as well as a checkpoint-enhanced arrest at early origins that accompanies the repression of late origin firing. We propose that the initial checkpoint-enhanced arrest reflects events that facilitate fork resolution at subsequent lesions.  相似文献   

9.
Huang and colleagues identify a human primase-polymerase that is required for stalled replication fork restart and the maintenance of genome integrity.EMBO reports (2013) 14 12, 1104–1112 doi:10.1038/embor.2013.159The successful duplication of genomic DNA during S phase is essential for the proper transmission of genetic information to the next generation of cells. Perturbation of normal DNA replication by extrinsic stimuli or intrinsic stress can result in stalled replication forks, ultimately leading to abnormal chromatin structures and activation of the DNA damage response. On formation of stalled replication forks, many DNA repair and recombination pathway proteins are recruited to resolve the stalled fork and resume proper DNA synthesis. Initiation of replication at sites of stalled forks differs from traditional replication and, therefore, requires specialized proteins to reactivate DNA synthesis. In this issue of EMBO reports, Wan et al [1] introduce human primase-polymerase 1 (hPrimpol1)/CCDC111, a novel factor that is essential for the restart of stalled replication forks. This article is the first, to our knowledge, to ascertain the function of human Primpol enzymes, which were originally identified as members of the archaeao-eukaryotic primase (AEP) family [2].Single-stranded DNA (ssDNA) forms at stalled replication forks because of uncoupling of the DNA helicase from the polymerase, and is coated by replication protein A (RPA) for stabilization and recruitment of proteins involved in DNA repair and restart of replication. To identify novel factors playing important roles in the resolution of stalled replication forks, Wan and colleagues [1] used mass spectrometry to identify RPA-binding partners. Among the proteins identified were those already known to be located at replication forks, including SMARCAL1/HARP, BLM and TIMELESS. In addition they found a novel interactor, the 560aa protein CCDC111. This protein interacts with the carboxyl terminus of RPA1 through its own C-terminal region, and localizes with RPA foci in cells after hydroxyurea or DNA damage induced by ionizing irradiation. Owing to the presence of AEP and zinc-ribbon-like domains at the amino-terminal and C-terminal regions, respectively [2], CCDC111 was predicted to have both primase and polymerase enzymatic activities, which was confirmed with in vitro assays, leading to the name hPrimpol1 for this unique enzyme.The most outstanding discovery in this article is that hPrimpol1 is required for the restart of DNA synthesis from a stalled replication fork (Fig 1). With use of a single DNA fibre assay, knock down of hPrimpol1 had no effect on normal replication-fork progression or the firing of new origins in the presence of replication stress. After removal of replication stress, however, the restart of stalled forks was significantly impaired. Furthermore, the authors observed that hPrimpol1 depletion enhanced the toxicity of replication stress to human cells. Together, these data suggest that hPrimpol1 is a novel guardian protein that ensures the proper re-initiation of DNA replication by control of the repriming and repolymerization of newly synthesized DNA.Open in a separate windowFigure 1The role of hPrimpol1 in stalled replication fork restart. (A) Under normal conditions, the replicative helicase unwinds parental DNA, generating ssDNA that is coated by RPA and serves as a template for leading and lagging strand synthesis. Aside from interacting with RPA bound to the short stretches of ssDNA, the role of hPrimpol1 in normal progression of replication forks is unknown. (B) Following repair of a stalled replication fork, (1) hPrimpol1 rapidly resumes DNA synthesis of long stretches of RPA-coated ssDNA located at the stalled fork site. Later, the leading-strand polymerase (2) or lagging-strand primase and polymerase (3) replace hPrimpol1 to complete replication of genomic DNA. RPA, replication protein A; ssDNA, single-stranded DNA.Eukaryotic DNA replication is initiated at specific sites, called origins, through the help of various proteins, including ORC, CDC6, CDT1 and the MCM helicase complex [3]. On unwinding of the parental duplexed DNA, lagging strand ssDNA is coated by the RPA complex and used as a template for newly synthesized daughter DNA. DNA primase, a type of RNA polymerase, catalyses short RNA primers on the RPA-coated ssDNA that facilitate further DNA synthesis by DNA polymerase. While the use of a short RNA primer is occasionally necessary to restart leading-strand replication, such as in the case of a stalled DNA polymerase, it is primarily utilized in lagging-strand synthesis for the continuous production of Okazaki fragments. The lagging-strand DNA polymerase must efficiently coordinate its action with DNA primase and other replication factors, including DNA helicase and RPA [4]. Cooperation between DNA polymerase and primase is disturbed after DNA damage, ultimately resulting in the collapse of stalled replication forks. Until now, it was believed that DNA primase and DNA polymerase performed separate and catalytically unique functions in replication-fork progression in human cells, but this report provides the first example, to our knowledge, of a single enzyme performing both primase and polymerase functions to restart DNA synthesis at stalled replication forks after DNA damage (Fig 1).… this report provides the first example of a single enzyme performing both primase and polymerase function to restart DNA synthesis at stalled replication forksA stalled replication fork, if not properly resolved, can be extremely detrimental to a cell, causing permanent cell-cycle arrest and, ultimately, death. Therefore, eukaryotic cells have developed many pathways for the identification, repair and restart of stalled forks [5]. RPA recognizes ssDNA at stalled forks and activates the intra-S-phase checkpoint pathway, which involves various signalling proteins, including ATR, ATRIP and CHK1 [6]. This checkpoint pathway halts cell-cycle progression until the stalled forks are properly repaired and restarted. Compared with the recognition and repair of stalled forks, the mechanism of fork restart is relatively elusive. Studies have, however, begun to shed light on this process. For instance, RPA-directed SMARCAL1 has been discovered to be important for restart of DNA replication in bacteria and humans [7]. Together with the identification of hPrimpol1, these findings have helped to expand the knowledge of the mechanism of restarting DNA replication. Furthermore, both reports raise many questions regarding the cooperative mechanism of hPrimpol1 and SMARCAL1 with RPA at stalled forks to ensure genomic stability and proper fork restart [7].First, these findings raise the question of why cells need the specialized hPrimpol1 to restart DNA replication at stalled forks rather than using the already present DNA primase and polymerase. One possibility is that other DNA polymerases are functionally inhibited due to the response of the cell to DNA damage. Although the cells are ready to restart replication, the impaired polymerases might require additional time to recover after DNA damage, necessitating the use of hPrimpol1. In support of this idea, we found that the p12 subunit of DNA polymerase δ is degraded by CRL4CDT2 E3 ligase after ultraviolet damage [8]. As a result, alternative polymerases, such as hPrimpol1, could compensate for temporarily non-functioning traditional polymerases. A second explanation is that the polymerase and helicase uncoupling after stalling of a fork results in long stretches of ssDNA that are coated with RPA. To restart DNA synthesis, cells must quickly reprime and polymerize large stretches of ssDNA to prevent renewed fork collapse. By its constant interaction with RPA1, hPrimpol1 is present on the ssDNA and can rapidly synthesize the new strand of DNA after the recovery of stalled forks. Third, the authors found that the association of hPrimpol1 with RPA1 is independent of its functional AEP and zinc-ribbon-like domains and occurs in the absence of DNA damage. These results might indicate a role for hPrimpol1 in normal replication fork progression, but further work is necessary to determine whether that is true.The discovery of hPrimpol1 is also important in an evolutionary contextSeveral questions remain. First, what is the fidelity of the polymerase activity? Other specialized polymerases that act at DNA damage sites sometimes have the ability to misincorporate a nucleotide across from a site of damage, for example pol-eta and -zeta [9]. It will be interesting to know whether hPrimpol1 is a high-fidelity polymerase or an error-prone polymerase. Second, is the polymerase only brought into action after fork stalling? If hPrimpol1 is an error-prone polymerase, one could envision other types of DNA damage that can be bypassed by hPrimpol1. Third, is the primase selective for ribonucleotides, or can it also incorporate deoxynucleotides? The requirement of the same domain—AEP—for primase and polymerase activities raises the possibility that NTPs or dNTPs could be used for primase or polymerase activities.The discovery of hPrimpol1 is also important in an evolutionary context. In 2003, an enzyme with catalytic activities like that of hPrimpol1 was discovered in a thermophilic archeaon and in Gram-positive bacteria [10]. This protein had several catalytic activities in vitro, including ATPase, primase and polymerase. In contrast to these Primpol enzymes, those capable of primase and polymerase functions had not been found in higher eukaryotes, which suggested that evolutionary pressures forced a split of these dual-function enzymes. Huang et al''s report suggests, however, that human cells do in fact retain enzymes similar to Primpol. In summary, the role of hPrimpol1 at stalled forks broadens our knowledge of the restart of DNA replication in human cells after fork stalling, allowing for proper duplication of genomic DNA, and provides insight into the evolution of primases in eukaryotes.  相似文献   

10.
11.
Eukaryotic cells respond to DNA damage within the S phase by activating an intra-S checkpoint: a response that includes reducing the rate of DNA synthesis. In yeast cells this can occur via checkpoint-dependent inhibition of origin firing and stabilization of ongoing forks, together with a checkpoint-independent slowing of fork movement. In higher eukaryotes, however, the mechanism by which DNA synthesis is reduced is less clear. We have developed strategies based on DNA fiber labeling that allow the quantitative assessment of rates of replication fork movement, origin firing, and fork stalling throughout the genome by examining large numbers of individually labeled replication forks. We show that exposing S phase cells to ionizing radiation induces a transient block to origin firing but does not affect fork rate or fork stalling. Alkylation damage by methyl methane sulfonate causes a slowing of fork movement and a high rate of fork stalling, in addition to inducing a block to new origin firing. Nucleotide depletion by hydroxyurea also reduces replication fork rate and increases stalling; moreover, in contrast to a recent report, we show that hydroxyurea induces a strong block to new origin firing. The DNA fiber labeling strategy provides a powerful new approach to analyze the dynamics of DNA replication in a perturbed S phase.  相似文献   

12.
Günes C  Rudolph KL 《The EMBO journal》2012,31(13):2833-2834
EMBO J 31 13, 2839–2851 (2012); published online May082012Senescence represents a major tumour suppressor checkpoint activated by telomere dysfunction or cellular stress factors such as oncogene activation. In this issue of The EMBO Journal, Suram et al (2012) reveal a surprising interconnection between oncogene activation and telomere dysfunction induced senescence. The study supports an alternative model of tumour suppression, indicating that oncogene-induced accumulation of telomeric DNA damage contributes to the induction of senescence in telomerase-negative tumours.Telomere shortening limits the proliferative capacity of primary human cells after 50–70 cell divisions by induction of replicative senescence activated by critically short, dysfunctional telomeres. Different mechanisms were thought to initiate senescence in response to oncogene activation, which occurs abruptly within a few cell doublings (Serrano et al, 1997). Oncogene-induced senescence (OIS) involves an activation of DNA damage signals at stalled replication forks induced by DNA replication stress (Bartkova et al, 2006; Di Micco et al, 2006). Replication fork stalling in response to oncogene activation preferentially affects common fragile sites of the DNA (Tsantoulis et al, 2008). The ends of eukaryotic chromosomes—the telomeres–represent common fragile sites that are sensitive to replication fork stalling (Sfeir et al, 2009). These data made it tempting to speculate whether replication fork stalling at telomeres was causatively involved in OIS. Studies on replicative senescence in human fibroblast also supported this possibility showing that mitogenic signals amplify DNA damage responses in senescent cells (Satyanarayana et al, 2004).Multiple studies revealed experimental evidences that senescence suppresses tumour progression in mouse models and early human tumours (for review see Collado and Serrano, 2010). The relative contribution of OIS and telomere dysfunction induced senescence (TDIS) to tumour suppression and possible interconnections between the two pathways at the level of checkpoint induction were not investigated in previous studies. In this issue of The EMBO Journal, Suram et al (2012) describe the presence of TDIS in human precursor lesions but not in the corresponding malignant tumours. Mechanistically, the study shows that oncogenic signals cause replication fork stalling, resulting in telomeric DNA damage accumulation and activation of DNA damage checkpoints reminiscent to TDIS. Telomerase expression does not rescue replication fork stalling but prevents the accumulation of DNA damage at telomeres allowing a bypass of OIS.The study has several important implications for molecular pathways and therapeutic approaches in cancer that need to be further explored (Figure 1):Open in a separate windowFigure 1Traditional and new models of senescence in tumour suppression. (A) Traditional model of replicative senescence: Telomerase-negative tumour cell clones experience telomere shortening as a consequence of cell division. After a lack period depending on the initial telomere length, tumour cells accumulate telomere dysfunction and activation of senescence impairs tumour growth. Telomerase activation represents a late event allowing tumour progression. (B) New model of oncogene induced, telomere-dependent senescence: Oncogene activation leads to abrupt accumulation of DNA damage at telomeres resulting in senescence and tumour suppression. Telomerase-positive stem cells could be resistant to OIS and may be selected as the cell type of origin of tumour development.(i) Telomere length independent roles of telomeres in tumour suppressionThe classical model of telomere-dependent tumour suppression indicates that proliferation-dependent telomere shortening leads to telomere dysfunction, activation of DNA damage checkpoints, and induction of senescence suppressing the growth of telomerase-negative tumour clones. Studies on mouse models supported this concept showing that telomere shortening impairs the progression of initiated tumours in a telomere length-dependent manner (Feldser and Greider, 2007). The new data from Suram et al (2012) indicate that oncogene-induced replication fork stalling activates a telomere-dependent senescence checkpoint, which is independent of telomere length. The study shows that replication forks stall in response to oncogene activation throughout the genome. However, stalled replication forks are resolved in non-telomeric regions, whereas fork stalling inside telomeres leads to un-repairable DNA damage in telomerase-negative cells. These findings are in line with recent publication showing accumulation of un-repairable DNA damage in telomeric DNA in response to aging and stress-induced DNA damage (Fumagalli et al, 2012).(ii) Telomere length independent roles of telomerase in tumour progressionFollowing the classical model telomeres in tumour suppression (Figure 1A), telomerase re-activation is required for tumour progression by limiting telomere dysfunction and the induction of DNA damage checkpoints in response to telomere shortening. The new data from Suram et al (2012) indicate that telomerase has an additional telomere length independent role in tumour progression. The study shows that catalytically active telomerase prevents the activation of DNA damage signals originating from stalled replication forks inside telomeres in response to oncogene activation (Figure 1B). The exact mechanisms of telomerase-dependent healing of stalled replication forks at telomeres remain to be elucidated. It is also unclear whether telomerase activity can prevent any type of DNA damage at telomeres as an over-expression of TERT could not suppress irradiation-induced cellular senescence or the persistence of telomeric DDR following irradiation, H2O2, or chemotherapy induced DNA damage (Hewitt et al, 2012).The data could provide a plausible explanation for the increased tumorigenesis in telomerase transgenic mice—a finding which is difficult to explain by telomere length dependent effects of telomerase given the long telomere reserves in mouse tissues (Gonzalez-Suarez et al, 2001). According to the findings of Suram et al (2012), anti-telomerase therapies could have immediate anti-cancer effects in tumours depending on telomerase-mediated healing of stalled replication forks at telomeres. Specific markers for this dependency could be of clinical value. In addition, the data support the concept that somatic stem cells could represent the cell type of origin of cancers. In contrast to differentiated somatic cells, tissues stem cells are often telomerase-positive, indicating that stem cells might be less sensitive to OIS.  相似文献   

13.
14.
Maintenance of genome integrity is crucial to avoid cancer and other genetic diseases. Thus faced with DNA damage, cells mount a DNA damage response to avoid genome instability. The DNA damage response is partially inhibited during mitosis presumably to avoid erroneous processing of the segregating chromosomes. Yet our recent study shows that TopBP1-mediated DNA processing during mitosis is highly important to reduce transmission of DNA damage to daughter cells.1 Pedersen RT, Kruse T, Nilsson J, Oestergaard VH, Lisby M. TopBP1 is required at mitosis to reduce transmission of DNA damage to G1 daughter cells. J Cell Biol 2015; 210:565-82; PMID:26283799; http://dx.doi.org/10.1083/jcb.201502107[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Here we provide an overview of the DNA damage response and DNA repair during mitosis. One role of TopBP1 during mitosis is to stimulate unscheduled DNA synthesis at underreplicated regions. We speculated that such genomic regions are likely to hold stalled replication forks or post-replicative gaps, which become the substrate for DNA synthesis upon entry into mitosis. Thus, we addressed whether the translesion pathways for fork restart or post-replicative gap filling are required for unscheduled DNA synthesis in mitosis. Using genetics in the avian DT40 cell line, we provide evidence that unscheduled DNA synthesis in mitosis does not require the translesion synthesis scaffold factor Rev1 or PCNA ubiquitylation at K164, which serve to recruit translesion polymerases to stalled forks. In line with this finding, translesion polymerase η foci do not colocalize with TopBP1 or FANCD2 in mitosis. Taken together, we conclude that TopBP1 promotes unscheduled DNA synthesis in mitosis independently of the examined translesion polymerases.  相似文献   

15.
Cellular RNA is decorated with over 170 types of chemical modifications. Many modifications in mRNA, including m6A and m5C, have been associated with critical cellular functions under physiological and/or pathological conditions. To understand the biological functions of these modifications, it is vital to identify the regulators that modulate the modification rate. However, a high‐throughput method for unbiased screening of these regulators is so far lacking. Here, we report such a method combining pooled CRISPR screen and reporters with RNA modification readout, termed CRISPR integrated gRNA and reporter sequencing (CIGAR‐seq). Using CIGAR‐seq, we discovered NSUN6 as a novel mRNA m5C methyltransferase. Subsequent mRNA bisulfite sequencing in HAP1 cells without or with NSUN6 and/or NSUN2 knockout showed that NSUN6 and NSUN2 worked on non‐overlapping subsets of mRNA m5C sites and together contributed to almost all the m5C modification in mRNA. Finally, using m1A as an example, we demonstrated that CIGAR‐seq can be easily adapted for identifying regulators of other mRNA modification.  相似文献   

16.
Long DNA palindromes are sites of genome instability (deletions, amplification, and translocations) in both prokaryotic and eukaryotic cells. In Escherichia coli, genetic evidence has suggested that they are sites of DNA cleavage by the SbcCD complex that can be repaired by homologous recombination. Here we obtain in vivo physical evidence of an SbcCD-induced DNA double-strand break (DSB) at a palindromic sequence in the E. coli chromosome and show that both ends of the break stimulate recombination. Cleavage is dependent on DNA replication, but the observation of two ends at the break argues that cleavage does not occur at the replication fork. Genetic analysis shows repair of the break requires the RecBCD recombination pathway and PriA, suggesting a mechanism of bacterial DNA DSB repair involving the establishment of replication forks.  相似文献   

17.
Host–pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. Using these “molecular scars” as a guide to discover gene functions, we discovered a vertebrate-specific MItochondrial STress Response (MISTR) circuit. MISTR proteins are associated with electron transport chain (ETC) factors and activated by stress signals such as interferon gamma (IFNγ) and hypoxia. Upon stress, ultraconserved microRNAs (miRNAs) down-regulate MISTR1(NDUFA4) followed by replacement with paralogs MItochondrial STress Response AntiViral (MISTRAV) and/or MItochondrial STress Response Hypoxia (MISTRH). While cells lacking MISTR1(NDUFA4) are more sensitive to chemical and viral apoptotic triggers, cells lacking MISTRAV or expressing the squirrelpox virus-encoded vMISTRAV exhibit resistance to the same insults. Rapid evolution signatures across primate genomes for MISTR1(NDUFA4) and MISTRAV indicate recent and ongoing conflicts with pathogens. MISTR homologs are also found in plants, yeasts, a fish virus, and an algal virus indicating ancient origins and suggesting diverse means of altering mitochondrial function under stress. The discovery of MISTR circuitry highlights the use of evolution-guided studies to reveal fundamental biological processes.

Host-pathogen conflicts leave genetic signatures in genes that are critical for host defense functions. This study uses these “molecular scars” as a guide to identify a vertebrate-specific mitochondrial stress response circuit that interacts with the electron transport chain and is activated by stress signals such as interferon-gamma and hypoxia.  相似文献   

18.
19.
Biosynthesis reprograming is an important way to diversify chemical structures. The large repetitive DNA sequences existing in polyketide synthase genes make seamless DNA manipulation of the polyketide biosynthetic gene clusters extremely challenging. In this study, to replace the ethyl group attached to the C-21 of the macrolide insecticide spinosad with a butenyl group by refactoring the 79-kb gene cluster, we developed a RedEx method by combining Redαβ mediated linear-circular homologous recombination, ccdB counterselection and exonuclease mediated in vitro annealing to insert an exogenous extension module in the polyketide synthase gene without any extra sequence. RedEx was also applied for seamless deletion of the rhamnose 3′-O-methyltransferase gene in the spinosad gene cluster to produce rhamnosyl-3′-desmethyl derivatives. The advantages of RedEx in seamless mutagenesis will facilitate rational design of complex DNA sequences for diverse purposes.  相似文献   

20.
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号