首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Quantitative structure activity type models were developed in an attempt to predict the key features of peptide sequences having dipeptidyl peptidase IV (DPP-IV) inhibitory activity. The models were then employed to help predict the potential of peptides, which are currently reported in the literature to be present in the intestinal tract of humans following milk/dairy product ingestion, to act as inhibitors of DPP-IV. Two models (z- and v-scale) for short (2–5 amino acid residues) bovine milk peptides, behaving as competitive inhibitors of DPP-IV, were developed. The z- and the v-scale models (p < 0.05, R2 of 0.829 and 0.815, respectively) were then applied to 56 milk protein-derived peptides previously reported in the literature to be found in the intestinal tract of humans which possessed a structural feature of DPP-IV inhibitory peptides (P at the N2 position). Ten of these peptides were synthetized and tested for their in vitro DPP-IV inhibitory properties. There was no agreement between the predicted and experimentally determined DPP-IV half maximal inhibitory concentrations (IC50) for the competitive peptide inhibitors. However, the ranking for DPP-IV inhibitory potency of the competitive peptide inhibitors was conserved. Furthermore, potent in vitro DPP-IV inhibitory activity was observed with two peptides, LPVPQ (IC50 = 43.8 ± 8.8 μM) and IPM (IC50 = 69.5 ± 8.7 μM). Peptides present within the gastrointestinal tract of human may have promise for the development of natural DPP-IV inhibitors for the management of serum glucose.  相似文献   

2.
A series of 2-[3-[2-[(2S)-2-cyano-1-pyrrolidinyl]-2-oxoethylamino]-3-methyl-1-oxobutyl]-based DPP-IV inhibitors with various monocyclic amines were synthesized. The structure–activity relationships (SAR) led to the discovery of potent DPP-IV inhibitors, having IC50 values of <100 nM with excellent selectivity over the closely related enzymes, DPP-II, DPP8, DPP9 and FAP (IC50 > 20 μM). Of these compounds, the analogues 12a, 12h and 12i exhibited a long-lasting ex vivo DPP-IV inhibition in rats.  相似文献   

3.
Three classes of novel inhibitors of inosine monophosphate dehydrogenase have been prepared and their anti-proliferative properties were evaluated against several cancer cell lines.(1) Mycophenolic adenine dinucleotide analogues (813) containing a substituent at the C2 of adenine ring were found to be potent inhibitors of IMPDH (Ki’s in range of 0.6–82 nM) and sub-μM inhibitors of leukemic K562 cell proliferation. (2) Mycophenolic adenosine (d and l) esters (20 and 21) showed a potent inhibition of IMPDH2 (Ki = 102 and Ki = 231 nM, respectively) and inhibition of K562 cell growth (IC50 = 0.5 and IC50 = 1.6 μM). These compounds serve both as inhibitors of the enzyme and as a depot form of mycophenolic acid. The corresponding amide analogue 22, also a potent inhibitor of IMPDH (Ki = 84 nM), did not inhibit cancer cell proliferation. (3) Mycophenolic-(l)- and (d)-valine adenine di-amide derivatives 25 (Ki = 9 nM) and 28 (Ki = 3 nM) were found to be very potent enzymatically, but did not inhibit proliferation of cancer cells.  相似文献   

4.
Molecular docking of a library of all 8000 possible tripeptides to the active site of DPP-IV was used to determine their binding potential. A number of tripeptides were selected for experimental testing, however, there was no direct correlation between the Vina score and their in vitro DPP-IV inhibitory properties. While Trp-Trp-Trp, the peptide with the best docking score, was a moderate DPP-IV inhibitor (IC50 216 μM), Lineweaver and Burk analysis revealed its action to be non-competitive. This suggested that it may not bind to the active site of DPP-IV as assumed in the docking prediction. Furthermore, there was no significant link between DPP-IV inhibition and the physicochemical properties of the peptides (molecular mass, hydrophobicity, hydrophobic moment (μH), isoelectric point (pI) and charge). LIGPLOTs indicated that competitive inhibitory peptides were predicted to have both hydrophobic and hydrogen bond interactions with the active site of DPP-IV. DPP-IV inhibitory peptides generally had a hydrophobic or aromatic amino acid at the N-terminus, preferentially a Trp for non-competitive inhibitors and a broader range of residues for competitive inhibitors (Ile, Leu, Val, Phe, Trp or Tyr). Two of the potent DPP-IV inhibitors, Ile-Pro-Ile and Trp-Pro (IC50 values of 3.5 and 44.2 μM, respectively), were predicted to be gastrointestinally/intestinally stable. This work highlights the needs to test the assumptions (i.e. competitive binding) of any integrated strategy of computational and experimental screening, in optimizing screening. Future strategies targeting allosteric mechanisms may need to rely more on structure–activity relationship modeling, rather than on docking, in computationally selecting peptides for screening.  相似文献   

5.
A high throughput screening (HTS) hit, 1 (Plk1 Ki = 2.2 μM) was optimized and evaluated for the enzymatic inhibition of Plk-1 kinase. Molecular modeling suggested the importance of adding a hydrophobic aromatic amine side chain in order to improve the potency by a classic kinase H-donor–acceptor binding mode. Extensive SAR studies led to the discovery of 49 (Plk1 Ki = 5 nM; EC50 = 1.05 μM), which demonstrated moderate efficacy at 100 mpk in a MiaPaCa tumor model, with no overt toxicity.  相似文献   

6.
Activation of enzymes by low concentrations of denaturants has been reported for a limited number of enzymes including lipocalin-type prostaglandin D synthase (L-PGDS) and adenylate kinase. During unfolding studies on human biliverdin-IXα reductase it was discovered that the enzyme is activated at low concentrations of urea. Under standard assay conditions the native enzyme displays pronounced substrate inhibition with biliverdin as variable substrate; however in the presence of 3 M urea, the substrate inhibition is abolished and the enzyme exhibits Michaelian kinetics. When the initial rate kinetics with NADPH as variable substrate are conducted in 3 M urea, the Vmax is increased 11-fold to 1.8 μmol/min/mg and the apparent Km for biliverdin increases from 1 to 3 μM. We report the existence of two kinetically distinct folded intermediates between the native and unfolded forms. When the period of incubation with urea was varied prior to measuring enzyme activity, the apparent Vmax was shown to decay to half that seen at zero time with a half life of 5.8 minutes, while the apparent Km for NADPH remains constant at approximately 5 μM. With NADH as cofactor the half life of the activated (A) form was 2.9 minutes, and this form decays in 3 M urea to a less active (LA) form. The apparent Km for NADH increases from 0.33 mM to 2 mM for the A and LA forms. These kinetically distinct species are reminiscent of the activity-enhanced and inactive forms of L-PGDS observed in the presence of urea and guanidine hydrochloride.  相似文献   

7.
A novel series of benzimidazolone-containing histamine H3-receptor antagonists were prepared and their structure–activity relationship was explored. These benzimidazolone analogs demonstrate potent H3-receptor binding affinities, no P450 enzyme inhibition, and strong H3 functional activity. Compound 1o exhibits the best overall profile with H3Ki = 0.95 nM and rat AUC = 12.9 μM h.  相似文献   

8.
Novel amide derivatives of probenecid, a well-known uricosuric agent, were synthesized and evaluated as inhibitors of human carbonic anhydrases (hCAs, EC 4.2.1.1). The transmembrane isoforms (hCA IX and XII) were potently and selectively inhibited by some of them. The proposed chemical modification led to a complete loss of hCA II inhibition (Kis > 10,000 nM) and enhanced the inhibitory activity against the tumour-associated hCA XII (compound 4 showed a Ki value of 15.3 nM). The enzyme inhibitory data have also been validated by docking studies of the compounds within the active site of hCA XII.  相似文献   

9.
Central heterocyclic ring size reduction from piperidinyl to pyrrolidinyl in the vesicular monoamine transporter-2 (VMAT2) inhibitor GZ-793A and its analogs resulted in novel N-propane-1,2(R)-diol analogs 11a–i. These compounds were evaluated for their affinity for the dihydrotetrabenazine (DTBZ) binding site on VMAT2 and for their ability to inhibit vesicular dopamine (DA) uptake. The 4-difluoromethoxyphenethyl analog 11f was the most potent inhibitor of [3H]-DTBZ binding (Ki = 560 nM), with 15-fold greater affinity for this site than GZ-793A (Ki = 8.29 μM). Analog 11f also showed similar potency of inhibition of [3H]-DA uptake into vesicles (Ki = 45 nM) compared to that for GZ-793A (Ki = 29 nM). Thus, 11f represents a new water-soluble inhibitor of VMAT function.  相似文献   

10.
Ponkoranol is a naturally occurring glucosidase inhibitor isolated from the plant Salacia reticulata. The compound comprises a sulfonium ion with an internal sulfate counter ion. We report here an efficient synthetic route to 3′-O-methyl ponkoranol to test the hypothesis that occupation of a hydrophobic pocket by a methyl group instead of the polar sulfate ion within the active site of human N-terminal maltase glucoamylase would be beneficial. The synthetic strategy relies on the nucleophilic attack of 2,3,5-tri-O-benzyl-1,4-anhydro-4-thio-d-arabinitol at the C-6 position of benzyl 6-O-p-toluenesulfonyl β-d-glucopyranoside, followed by deprotection using boron trichloride and reduction with sodium borohydride. The target compound inhibited the N-terminal catalytic domain of intestinal human maltase glucoamylase (ntMGAM) with a Ki value of 0.50 ± 0.04 μM, higher than those of de-O-sulfonated ponkoranol (Ki = 43 ± 3 nM), or its 5′-stereoisomer (Ki = 15 ± 1 nM). We conclude that the interaction of the methyl group with hydrophobic residues in the active site is not as beneficial to inhibition of ntMGAM as the other interactions of the polyhydroxylated chain with active-site residues.  相似文献   

11.
Protein O-GlcNAc glycosylation is a ubiquitous post-translational modification in metazoans. O-GlcNAcase (OGA), which is responsible for removing O-GlcNAc from serine or threonine residues, plays a key role in O-GlcNAc metabolism. Potent and selective O-GlcNAcase (OGA) inhibitors are useful tools for investigating the role of this modification in a broad range of cellular processes, and may also serve as drug candidates for treatment of neurodegenerative diseases. Biological screening of the gluco-configured tetrahydroimidazopyridine derivatives identified a compound as a potent and competitive inhibitor of human O-GlcNAcase (OGA) with a Ki of 5.9 μM, and it also displayed 28-fold selectivity for human OGA over human lysosomal β-hexosaminidase A (Hex A, Ki = 163 μM). In addition, cell-based assay revealed that this compound was cell-permeant and effectively induced cellular hyper-O-GlcNAcylation at 10 μM concentration.  相似文献   

12.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

13.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

14.
Exploring small-molecule acetylcholinesterase (AChE) inhibitors to slow the breakdown of acetylcholine (Ach) represents the mainstream direction for Alzheimer’s disease (AD) therapy. As the first acetylcholinesterase inhibitor approved for the clinical treatment of AD, tacrine has been widely used as a pharmacophore to design hybrid compounds in order to combine its potent AChE inhibition with other multi-target profiles. In present study, a series of novel tacrine–coumarin hybrids were designed, synthesized and evaluated as potent dual-site AChE inhibitors. Moreover, compound 1g was identified as the most potent candidate with about 2-fold higher potency (Ki = 16.7 nM) against human AChE and about 2-fold lower potency (Ki = 16.1 nM) against BChE than tacrine (Ki = 35.7 nM for AChE, Ki = 8.7 nM for BChE), respectively. In addition, some of the tacrine–coumarin hybrids showed simultaneous inhibitory effects against both Aβ aggregation and β-secretase. We therefore conclude that tacrine–coumarin hybrid is an interesting multifunctional lead for the AD drug discovery.  相似文献   

15.
《Phytomedicine》2014,21(7):992-997
Aphanizomenon flos-aquae (AFA) is a fresh water unicellular blue-green alga that has been traditionally used for over 25 years for its health-enhancing properties. Recent studies have shown the ability of a proprietary AFA extract (Klamin®) to improve mood, counteract anxiety, and enhance attention and learning. Aim of this study was to test the monoamine oxidase (MAO) inhibition activity of the same AFA extract and of its constituents phycocyanin (AFA-PC) and mycosporine-like aminoacids (AFA-MAAs). All compounds showed a dose-dependent selective inhibition of MAO-B activity as compared to MAO-A. The IC50 values of the AFA extract (concentration 10 mg/ml), AFA-PC and AFA-MAAs were 6.4 μl/ml, 1.33 μM and 1.98 μM, respectively, evidencing a mixed-type of inhibition for the AFA extract (Ki 0.99 μl/ml), a non-competitive inhibition for AFA-PC (Ki 1.06 μM) and a competitive inhibition for AFA-MAAs (Ki 0.585 μM). These results are important to explain the neuromodulating properties of the AFA extract Klamin®, which is rich in phenylethylamine, a general neuromodulator, that would nevertheless rapidly destroyed by MAO-B enzymes without the inhibitory activity of the synergic active principles AFA-PC and AFA-MAAs. The present investigation thus proposes the extract as potentially relevant in clinical areas such as mood disorders and neurodegenerative diseases.  相似文献   

16.
In our long and broad program to explore structure–activity relationships of the natural product azepinomycin and its analogues for inhibition of guanase, an important enzyme of purine salvage pathway of nucleic acid metabolism, it became necessary to investigate if the nucleoside analogues of the heterocycle azepinomycin, which are likely to be formed in vivo, would be more or less potent than the parent heterocycle. To this end, we have resynthesized both azepinomycin (1) and its two diastereomeric nucleoside analogues (2 and 3), employing a modified, more efficient procedure, and have biochemically screened all three compounds against a mammalian guanase. Our results indicate that the natural product is at least 200 times more potent toward inhibition of guanase as compared with its nucleoside analogues, with the observed Ki of azepinomycin (1) against the rabbit liver guanase = 2.5 (±0.6) × 10?6 M, while Ki of Compound 2 = 1.19 (±0.02) × 10?4 M and that of Compound 3 = 1.29 (±0.03) × 10?4 M. It is also to be noted that while IC50 value of azepinomycin against guanase in cell culture has long been reported, no inhibition studies nor Ki against a pure mammalian enzyme have ever been documented. In addition, we have, for the first time, determined the absolute stereochemistry of the 6-OH group of 2 and 3 using conformational analysis coupled with 2-D 1H NMR NOESY  相似文献   

17.
Adenosine receptors and monoamine oxidases are drug targets for neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease. In the present study we prepared a library of 55 mostly novel tetrahydropyrimido[2,1-f]purinediones with various substituents in the 1- and 3-position (1,3-dimethyl, 1,3-diethyl, 1,3-dipropyl, 1-methyl-3-propargyl) and broad variation in the 9-position. A synthetic strategy to obtain 3-propargyl-substituted tetrahydropyrimido[2,1-f]purinedione derivatives was developed. The new compounds were evaluated for their interaction with all four adenosine receptor subtypes and for their ability to inhibit monoamine oxidases (MAO). Introduction of mono- or di-chloro-substituted phenyl, benzyl or phenethyl residues at N9 of the 1,3-dimethyl series led to the discovery of a novel class of potent MAO-B inhibitors, the most potent compound being 9-(3,4-dichlorobenzyl)-1,3-dimethyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)-dione (21g, IC50 human MAO-B: 0.0629 μM), which displayed high selectivity versus the other investigated targets. Potent dually active A1/A2A adenosine receptor antagonists were identified, for example, 9-benzyl-1-methyl-3-propargyl-6,7,8,9-tetrahydropyrimido[1,2-f]purine-2,4(1H,3H)dione (19f, Ki, human receptors, A1: 0.249 μM, A2A: 0.253 μM). Several compounds showed triple-target inhibition, the best compound being 9-(2-methoxybenzyl)-1-methyl-3-(prop-2-ynyl)-6,7,8,9-tetrahydro pyrimido [1,2-f]purine-2,4(1H,3H)-dione (19g, Ki A1: 0.605 μM, Ki A2A: 0.417 μM, IC50 MAO-B: 1.80 μM). Compounds inhibiting several different targets involved in neurodegeneration may exhibit additive or even synergistic effects in vivo.  相似文献   

18.
Previous studies have shown that compound 1 displayed high affinity towards histamine H3 receptor (H3R), (human (h-H3R), Ki = 8.6 nM, rhesus monkey (rh-H3R), Ki = 1.2 nM, and rat (r-H3R), Ki = 16.5 nM), but exhibited high affinity for hERG channel. Herein, we report the discovery of a novel, potent, and highly selective H3R antagonist/inverse agonist 5a(SS) (SAR110068) with acceptable hERG channel selectivity and desirable pharmacological and pharmacokinetic properties through lead optimization sequence. The significant awakening effects of 5a(SS) on sleep–wake cycles studied by using EEG recording in rats during their light phase support its potential therapeutic utility in human sleep–wake disorders.  相似文献   

19.
20.
Recently, many natural products, especially some plant-derived polyphenols have been found to exert antiviral effects against influenza virus and show inhibitory activities on neuraminidases (NAs). In our research, we took caffeic acid which contained two phenolic hydroxyl groups as the basic fragment to build a small compound library with various structures. The enzyme inhibition result indicated that some compounds exhibited moderate activities against NA and compound 15d was the best with IC50 = 7.2 μM and 8.5 μM against N2 and N1 NAs, respectively. The 3,4-dihydroxyphenyl group from caffeic acid was important for the activity according to the docking analysis. Besides, compound 15d was found to be a non-competitive inhibitor with Ki = 11.5 ± 0.25 μM by the kinetic study and also presented anti-influenza virus activity in chicken embryo fibroblast cells. It seemed promising to discover more potent NA inhibitors from caffeic acid derivatives to cope with influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号