首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The aim of this paper is to study the function of allogeneic and autologous NK cells against Dental Pulp Stem Cells (DPSCs) and Mesenchymal Stem Cells (MSCs) and to determine the function of NK cells in a three way interaction with monocytes and stem cells.

Methodology/Principal Findings

We demonstrate here that freshly isolated untreated or IL-2 treated NK cells are potent inducers of cell death in DPSCs and MSCs, and that anti-CD16 antibody which induces functional split anergy and apoptosis in NK cells inhibits NK cell mediated lysis of DPSCs and MSCs. Monocytes co-cultured with either DPSCs or MSCs decrease lysis of stem cells by untreated or IL-2 treated NK cells. Monocytes also prevent NK cell apoptosis thereby raising the overall survival and function of NK cells, DPSCs or MSCs. Both total population of monocytes and those depleted of CD16+ subsets were able to prevent NK cell mediated lysis of MSCs and DPSCs, and to trigger an increased secretion of IFN-γ by IL-2 treated NK cells. Protection of stem cells from NK cell mediated lysis was also seen when monocytes were sorted out from stem cells before they were added to NK cells. However, this effect was not specific to monocytes since the addition of T and B cells to stem cells also protected stem cells from NK cell mediated lysis. NK cells were found to lyse monocytes, as well as T and B cells.

Conclusion/Significance

By increasing the release of IFN-γ and decreasing the cytotoxic function of NK cells monocytes are able to shield stem cells from killing by the NK cells, resulting in an increased protection and differentiation of stem cells. More importantly studies reported in this paper indicate that anti-CD16 antibody can be used to prevent NK cell induced rejection of stem cells.  相似文献   

2.
Mesenchymal stem cells (MSCs) are a group of multipotent cells with key properties of multi-lineage differentiation, expressing a set of relatively specific surface markers and unique immunomodulatory functions. IDO1, a catabolic enzyme of tryptophan, represents a critical molecule mediating immunomodulatory functions of MSCs. However, the signaling pathways involved in regulating these key properties still remain elusive. To investigate the involvement of Notch signaling as well as other potential signaling pathway(s) in regulating these critical properties of MSCs, we treated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) with γ-secreatase inhibitor I (GSI-I), which inhibits both Notch signaling and ubiquitin-proteasome activities. It was shown that the GSI-I treatment resulted in apoptosis, reduced expression of surface markers CD73, CD90 and CD105, reduced osteogenic differentiation, and reduction of the hUC-MSCs-mediated suppression of Th1 lymphocyte proliferation and the IFN-γ-induced IDO1 expression. Through distinguishing the effects of GSI-I between Notch inhibition and proteasome inhibition, it was further observed that, whereas both Notch inhibition and proteasome inhibition were attributable to the reduced CD105 expression and osteogenic differentiation, but not to the induced apoptosis. However, Notch inhibition, but not proteasome inhibition, only contributed to the significant effect of GSI-I on Th1 proliferation probably through reducing IDO1 promoter activity. In conclusion, the Notch signaling may represent a very important cell signaling capable of regulating multiple critical properties, especially the immunomodulatory functions of MSCs.  相似文献   

3.
Mesenchymal stem cells (MSCs) have arisen the attention to be a new attractive therapeutic tool treating autoimmune diseases such as allergic rhinitis (AR). AR is a chronic reversible allergic inflammation caused by the excessive activation of T-helper 2 (Th2) cells. Recently, MSCs have been proposed as a new therapy of AR as it can suppress some cytokines to control allogeneic Th2 response and functions. However, how MSCs function to reduce inflammation remains unclear. In this study, we aimed to investigate the role of ectomesenchymal stem cells (ECTO-MSCs) derived from nasal mucosa in eosinophilic inflammation and how it affects some immunoglobulins and cytokines. We used ovalbumin (OVA) as a sensitizer to induce nasal inflammation in mice by both injection and inhalation. In order to obtain deeper insights into the influences of ECTO-MSCs on nasal inflammation, the migration of ECTO-MSCs was assessed, the numbers of eosinophils and sneezing were counted, and several immunoglobulins and cytokines were measured. Here we show the ECTO-MSCs are able to migrate to inflammation site via tail vein injection. Eosinophils and sneezing were suppressed by ECTO-MSCs. Interestingly, IgE, interleukin (IL)-4, IL-5 and IL-10 secreted by Th-2 cells were down-regulated by ECTO-MSCs whereas IgG2 and IFN-γ were up-regulated. In conclusion, we have observed that ECTO-MSCs are associated with enhanced Th-1 immune response to nasal inflammation and reduced Th-2 immune response. Given the contributions of Th-2 cells to AR, the injection of ECTO-MSCs can be a promising therapy of AR through balancing immune response.  相似文献   

4.
5.
The ability to deliver cells to appropriate target tissues is a prerequisite for successful cell-based therapy. To optimize cell therapy it is therefore necessary to develop a robust method of in vivo cell delivery quantification. Here we examine Mesenchymal Stem Cells (MSCs) labeled with a series of 4 membrane dyes from which we select the optimal dye combination for pair-wise comparisons of delivery to inflamed tissue in the mouse ear using confocal fluorescence imaging. The use of an optimized dye pair for simultaneous tracking of two cell populations in the same animal enables quantification of a test population that is referenced to an internal control population, thereby eliminating intra-subject variations and variations in injected cell numbers. Consistent results were obtained even when the administered cell number varied by more than an order of magnitude, demonstrating an ability to neutralize one of the largest sources of in vivo experimental error and to greatly reduce the number of cells required to evaluate cell delivery. With this method, we are able to show a small but significant increase in the delivery of cytokine pre-treated MSCs (TNF-α & IFN-γ) compared to control MSCs. Our results suggest future directions for screening cell strategies using our in vivo cell delivery assay, which may be useful to develop methods to maximize cell therapeutic potential.  相似文献   

6.
Interferon-gamma (IFN-γ) is a glycoprotein generated by lymphocytes that possesses anti-tumor, antiviral and immunomodulatory functions. IFN-γ assays are broadly employed in immunological research and clinical diagnostic tests. Intracellular IFN-γ staining, in particular, is an important immune assay that allows simultaneous determination of cellular phenotype and antigen-specific T cell response. Aptamers have great potential for molecule detection and can bind to target molecules with high affinity and specificity. In this study, a novel 59-mer DNA aptamer (B1–4) was developed for assay of intracellular IFN-γ. The selected aptamer bound to IFN-γ with a Kd of 74.5 nM, with minimal cross-reactivity to albumin. The aptamer was also found capable of binding with paraformaldehyde-fixed IFN-γ. Moreover, B1–4 could enter permeated and paraformaldehyde-fixed lymphocytes, and bound to intracellular IFN-γ produced by these cells. When FITC-labeled B1–4 was used to stain a group of lymphocytes, the average fluorescence of the cells was positively correlated with the number of PMA-stimulated lymphocytes within the group. A standard curve could thus be established for assessing the fraction of IFN-γ-producing cells in a cluster of lymphocytes. The selected aptamer hence provides a novel approach for assaying intracellular IFN-γ generated by a group of lymphocytes, and may have application potential in both scientific research and clinical laboratory test.  相似文献   

7.
Mesenchymal stem cells (MSCs) are believed to exert their regenerative effects through differentiation and modulation of inflammatory responses. However, the relationship between the severity of inflammation and stem cell-mediated tissue repair has not been formally investigated. In this study, we applied different concentrations of dexamethasone (Dex) to anti-CD3-activated splenocyte cultured with or without MSCs. As expected, Dex exhibited a classical dose-dependent inhibition of T-cell proliferation. Surprisingly, although MSCs also blocked T-cell proliferation, the presence of Dex unexpectedly showed a dose-dependent reversion of T-cell proliferation. This effect of Dex was found to be exerted through interfering STAT1 phosphorylation-prompted expression of inducible nitric oxide synthase (iNOS). Interestingly, inflammation-induced chemokines in MSCs was unaffected. To test the role of inflammation severity in stem cell-mediated tissue repair, we employed mice with carbon tetrachloride-induced advanced liver fibrosis and found that although MSCs alone were effective, concurrent administration of Dex abrogated the therapeutic effects of MSCs on fibrin deposition, serum levels of bilirubin, albumin, and aminotransferases, as well as T-lymphocyte infiltration, especially IFN-γ+CD4+ and IL-17A+CD4+T cells. Likewise, iNOS−/− MSCs, which produce chemokines but not nitric oxide under inflammatory conditions, are ineffective in treating advanced liver fibrosis. Therefore, inflammation has a critical role in MSC-mediated tissue repair. In addition, concomitant application of MSCs with steroids should be avoided.  相似文献   

8.
9.
Mesenchymal stem cells (MSCs) play important roles in tissue repair and cancer progression. Our recent work suggests that some mesenchymal cells, notably myofibroblasts exhibit regulated exocytosis resembling that seen in neuroendocrine cells. We now report that MSCs also exhibit regulated exocytosis. Both a G-protein coupled receptor agonist, chemerin, and a receptor tyrosine kinase stimulant, IGF-II, evoked rapid increases in secretion of a marker protein, TGFβig-h3. The calcium ionophore, ionomycin, also rapidly increased secretion of TGFβig-h3 while inhibitors of translation (cycloheximide) or secretory protein transport (brefeldin A) had no effect, indicating secretion from preformed secretory vesicles. Inhibitors of the chemerin and IGF receptors specifically reduced the secretory response. Confocal microscopy of MSCs loaded with Fluo-4 revealed chemerin and IGF-II triggered intracellular Ca2+ oscillations requiring extracellular calcium. Immunocytochemistry showed co-localisation of TGFβig-h3 and MMP-2 to secretory vesicles, and transmission electron-microscopy showed dense-core secretory vesicles in proximity to the Golgi apparatus. Proteomic studies on the MSC secretome identified 64 proteins including TGFβig-h3 and MMP-2 that exhibited increased secretion in response to IGF-II treatment for 30min and western blot of selected proteins confirmed these data. Gene ontology analysis of proteins exhibiting regulated secretion indicated functions primarily associated with cell adhesion and in bioassays chemerin increased adhesion of MSCs and adhesion, proliferation and migration of myofibroblasts. Thus, MSCs exhibit regulated exocytosis that is compatible with an early role in tissue remodelling.  相似文献   

10.
11.

Background

Mesenchymal stem cells (MSCs) are considered the best candidate in stem cells therapy due to their multipotent differentiation ability, low expression of co-stimulatory molecules (CD80, CD86, CD34 and HLA-II) and immunosuppression effects on in vivo immune responses. MSCs were now widely used in clinical trials but received no encourage results. The major problem was the fate of engrafted MSCs in vivo could not be defined. Some studies indicated that MSCs could induce immune response and result in the damage and rejection of MSCs. As toll like receptors (TLRs) are important in inducing of immune responses, in this study we study the role of TLR7 in mediating the immune status of MSCs isolated from umbilical cord.

Results

Our results indicated that TLR7 agonist Imiquimod could increase the proliferation of PBMC isolated from healthy human volunteers and release of lactate dehydrogenase (LDH) in supernatant from PBMC-UCMSCs co-culture system. Flow cytometry and quantitative PCR also confirmed the regulated expression of surface co-stimulatory molecules and pro-inflammatory genes (IL-6, IL-8, IL-12, TGF-β and TNF-α). And the down-regulation expression of stem cell markers also confirmed the loss of stemness of UCMSCs. We also found that the osteo-differentiation ability of UCMSCs was enhanced in the presence of Imiquimod.

Conclusion

To our knowledge, this is the first report that activation of TLR7 pathway increases the immunogenicity of UCMSCs. Extensive researches have now been conducted to study whether the change of immune status will be help in tumor rejection based on the tumor-tropism of MSCs.  相似文献   

12.
Mesenchymal stromal/stem cells (MSCs) possess immunomodulatory and reparative properties. Through specific interactions with immune cells that participate in both innate and adaptive responses, MSCs exposed to an inflammatory microenvironment can downregulate many immune effector functions. Clinical trials focusing on MSCs to treat graft-versus-host disease (GvHD) and autoimmune diseases are underway. Current analyses suggest that MSCs will improve cell and solid organ transplantation by ameliorating rejection and possibly eliminating the requirement for prolonged regimens of conventional immunosuppressive drugs. This review examines the in vitro and in vivo evidence for the clinical use of bone marrow derived MSCs.  相似文献   

13.

Objective

Patients undergoing immune modulatory therapies for the treatment of autoimmune diseases such as multiple sclerosis, and individuals with an impaired-immune system, most notably AIDS patients, are in the high risk group of developing progressive multifocal leukoencephalopathy (PML), an often lethal disease of the brain characterized by lytic infection of oligodendrocytes in the central nervous system (CNS) with JC virus (JCV). The immune system plays an important regulatory role in controlling JCV reactivation from latent sites by limiting viral gene expression and replication. However, little is known regarding the molecular mechanisms responsible for this regulation.

Methods and Results

Here, we investigated the impact of soluble immune mediators secreted by activated PBMCs on viral replication and gene expression by cell culture models and molecular virology techniques. Our data revealed that viral gene expression and viral replication were suppressed by soluble immune mediators. Further studies demonstrated that soluble immune mediators secreted by activated PBMCs inhibit viral replication induced by T-antigen, the major viral regulatory protein, by suppressing its expression in glial cells. This unexpected suppression of T-antigen was mainly associated with the suppression of translational initiation. Cytokine/chemokine array studies using conditioned media from activated PBMCs revealed several candidate cytokines with possible roles in this regulation. Among them, only IFN-γ showed a robust inhibition of T-antigen expression. While potential roles for IFN-β, and to a lesser extent IFN-α have been described for JCV, IFN-γ has not been previously implicated. Further analysis of IFN-γ signaling pathway revealed a novel role of Jak1 signaling in control of viral T-antigen expression. Furthermore, IFN-γ suppressed JCV replication and viral propagation in primary human fetal glial cells, and showed a strong anti-JCV activity.

Conclusions

Our results suggest a novel role for IFN-γ in the regulation of JCV gene expression via downregulation of the major viral regulatory protein, T-antigen, and provide a new avenue of research to understand molecular mechanisms for downregulation of viral reactivation that may lead to development of novel strategies for the treatment of PML.  相似文献   

14.
15.
IFN-α/β plays a critical role in limiting viral spread, restricting viral tropism and protecting mice from neurotropic coronavirus infection. However, the IFN-α/β dependent mechanisms underlying innate anti-viral functions within the CNS are poorly understood. The role of RNase L in viral encephalomyelitis was explored based on its functions in inhibiting translation, inducing apoptosis, and propagating the IFN-α/β pathway through RNA degradation intermediates. Infection of RNase L deficient (RL−/−) mice with a sub-lethal, demyelinating mouse hepatitis virus variant revealed that the majority of mice succumbed to infection by day 12 p.i. However, RNase L deficiency did not affect overall control of infectious virus, or diminish IFN-α/β expression in the CNS. Furthermore, increased morbidity and mortality could not be attributed to altered proinflammatory signals or composition of cells infiltrating the CNS. The unique phenotype of infected RL−/− mice was rather manifested in earlier onset and increased severity of demyelination and axonal damage in brain stem and spinal cord without evidence for enhanced neuronal infection. Increased tissue damage coincided with sustained brain stem infection, foci of microglia infection in grey matter, and increased apoptotic cells. These data demonstrate a novel protective role for RNase L in viral induced CNS encephalomyelitis, which is not reflected in overall viral control or propagation of IFN-α/β mediated signals. Protective function is rather associated with cell type specific and regional restriction of viral replication in grey matter and ameliorated neurodegeneration and demyelination.  相似文献   

16.
Although B cells play important roles in the humoral immune response and the regulation of adaptive immunity, B cell subpopulations with unique phenotypes, particularly those with non-classical immune functions, should be further investigated. By challenging mice with Listeria monocytogenes, Escherichia coli, vesicular stomatitis virus and Toll-like receptor ligands, we identified an inducible CD11ahiFcγRIIIhi B cell subpopulation that is significantly expanded and produces high levels of IFN-γ during the early stage of the immune response. This subpopulation of B cells can promote macrophage activation via generating IFN-γ, thereby facilitating the innate immune response against intracellular bacterial infection. As this new subpopulation is of B cell origin and exhibits the phenotypic characteristics of B cells, we designated these cells as IFN-γ-producing innate B cells. Dendritic cells were essential for the inducible generation of these innate B cells from the follicular B cells via CD40L-CD40 ligation. Increased Bruton''s tyrosine kinase activation was found to be responsible for the increased activation of non-canonical NF-κB pathway in these innate B cells after CD40 ligation, with the consequent induction of additional IFN-γ production. The identification of this new population of innate B cells may contribute to a better understanding of B cell functions in anti-infection immune responses and immune regulation.  相似文献   

17.
18.
IFN-α exhibits either direct antiviral effects or distinct immunomodulatory properties, which was identified as a ‘natural immune adjuvant’ for both the innate and the adaptive immune responses. Here we have investigated the effects of IFN-α as an adjuvant on the generation of T follicular helper (Tfh) cells and antigen-specific antibody responses. The data showed that adenoviral vectors co-expressing FMDV VP1 proteins and porcine IFN-α potently enhanced the generation of Tfh cells, the secretion of IL-21 protein and the expression of Bcl-6 mRNA, compared with adenoviral vectors sole expressing VP1 alone. Additionally, IFN-α substantial increased the number of germinal-center (GC) B cells and formation of GCs. Furthermore, IFN-α enhanced the antibody response, as shown by increased production of all IgG and subclasses of IgG1 and IgG2a. Thus, our results revealed the potent adjuvant activity of IFN-α which enhanced the generation of Tfh cells and regulated the humoral immunity by promoting germinal-center reactions and antibody responses.  相似文献   

19.
Measles virus (MeV) infection is characterized by the formation of multinuclear giant cells (MGC). We report that beta interferon (IFN-β) production is amplified in vitro by the formation of virus-induced MGC derived from human epithelial cells or mature conventional dendritic cells. Both fusion and IFN-β response amplification were inhibited in a dose-dependent way by a fusion-inhibitory peptide after MeV infection of epithelial cells. This effect was observed at both low and high multiplicities of infection. While in the absence of virus replication, the cell-cell fusion mediated by MeV H/F glycoproteins did not activate any IFN-α/β production, an amplified IFN-β response was observed when H/F-induced MGC were infected with a nonfusogenic recombinant chimerical virus. Time lapse microscopy studies revealed that MeV-infected MGC from epithelial cells have a highly dynamic behavior and an unexpected long life span. Following cell-cell fusion, both of the RIG-I and IFN-β gene deficiencies were trans complemented to induce IFN-β production. Production of IFN-β and IFN-α was also observed in MeV-infected immature dendritic cells (iDC) and mature dendritic cells (mDC). In contrast to iDC, MeV infection of mDC induced MGC, which produced enhanced amounts of IFN-α/β. The amplification of IFN-β production was associated with a sustained nuclear localization of IFN regulatory factor 3 (IRF-3) in MeV-induced MGC derived from both epithelial cells and mDC, while the IRF-7 up-regulation was poorly sensitive to the fusion process. Therefore, MeV-induced cell-cell fusion amplifies IFN-α/β production in infected cells, and this indicates that MGC contribute to the antiviral immune response.  相似文献   

20.
BackgroundEffective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII).MethodsFemale 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis.ResultsThe histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer’s patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells.ConclusionsTreatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号