首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
PurposeTo validate the SpekPy software toolkit that has been developed to estimate the spectra emitted from tungsten anode X-ray tubes. The model underlying the toolkit introduces improvements upon a well-known semi-empirical model of X-ray emission.Materials and methodsUsing the same theoretical framework as the widely-used SpekCalc software, new electron penetration data was simulated using the Monte Carlo (MC) method, alternative bremsstrahlung cross-sections were applied, L-line characteristic emissions were included, and improvements to numerical methods implemented. The SpekPy toolkit was developed with the Python programming language. The toolkit was validated against other popular X-ray spectrum models (50 to 120 kVp), X-ray spectra estimated with MC (30 to 150 kVp) as well as reference half value layers (HVL) associated with numerous radiation qualities from standard laboratories (20 to 300 kVp).ResultsThe toolkit can be used to estimate X-ray spectra that agree with other popular X-ray spectrum models for typical configurations in diagnostic radiology as well as with MC spectra over a wider range of conditions. The improvements over SpekCalc are most evident at lower incident electron energies for lightly and moderately filtered radiation qualities. Using the toolkit, estimations of the HVL over a large range of standard radiation qualities closely match reference values.ConclusionsA toolkit to estimate X-ray spectra has been developed and extensively validated for central-axis spectra. This toolkit can provide those working in Medical Physics and beyond with a powerful and user-friendly way of estimating spectra from X-ray tubes.  相似文献   

2.
Results are presented from experimental studies of hard X-ray (HXR) emission in the photon energy range above 20 keV from dense radiating Z-pinch plasmas. The work is aimed at revealing the nature of fast-electron (electron beam) generation during the implosion of cylindrical and conical wire arrays in the Angara-5-1 facility at currents of up to 3 MA. It is found that the plasma implosion zippering caused by the inclination of wires affects the parameters of the HXR pulse emitted during the implosion of a conical array. It is shown that HXR emission correlates well with the decay of the plasma column near the cathode in the stagnation phase. HXR images of the pinch are produced by the bremsstrahlung of fast electrons generated during plasma column decay and interacting with plasma ions and the anode target. It is found that the use of conical arrays makes it possible to control the direction of plasma implosion zippering and the spatiotemporal and energy parameters of the pinch X-ray emission, in particular the X-ray yield. For wire array with diameters of 12 mm and linear masses of 200–400 μg/cm, the current of the fast electron beam is 20 kA and its energy is 60 J, which is about 1/500 of the energy of the main soft X-ray pulse.  相似文献   

3.

Background

In radiation therapy with orthovoltage units, the tube design has a crucial effect on its dosimetric features.

Aim

In this study, the effect of anode angle on photon beam spectra, depth dose and photon fluence per initial electron was studied for a commercial orthovoltage unit of X-RAD320 biological irradiator.

Materials and methods

The MCNPX MC code was used for modeling in the current study. We used the Monte Carlo method to model the X-RAD320 X-ray unit based on the manufacturer provided information. The MC model was validated by comparing the MC calculated photon beam spectra with the results of SpekCalc software. The photon beam spectra were calculated for anode angles from 15 to 35 degrees. We also calculated the percentage depth doses for some angles to verify the impact of anode angle on depth dose. Additionally, the heel effect and its relation with anode angle were studied for X-RAD320 irradiator.

Results

Our results showed that the photon beam spectra and their mean energy are changed significantly with anode angle and the optimum anode angle of 30 degrees was selected based on less heel effect and appropriate depth dose and photon fluence per initial electron.

Conclusion

It can be concluded that the anode angle of 30 degrees for X-RAD320 unit used by manufacturer has been selected properly considering the heel effect and dosimetric properties.  相似文献   

4.
Inverse bremsstrahlung heating and thermal electron-impact ionization of a metal cluster are analyzed with account for the spatial structure of the electromagnetic field. It is shown that, for a femtosecond IR radiation pulse with an intensity of ~1018 W/cm2 and for an iron cluster with an optimum radius of ~25 nm, the electron temperature is higher than 1 keV. In this case, the L shell of the ions is highly stripped. The X-ray bremsstrahlung yield from clusters with a radius greater than the skin depth is estimated.  相似文献   

5.
Results of experiments on the detection of suprathermal electron beams in the plasma of a highcurrent low-inductance vacuum spark by means of space-resolved spectral X-ray polarimetry are presented. It is shown that the observed polarization of bremsstrahlung may be caused by an ~100-keV electron beam propagating along the discharge axis from the pinching region toward the anode. The influence of the discharge initiation conditions on the parameters of the generated electron beams is analyzed.  相似文献   

6.
Both thick and thin films of pGEMR-3Zf- plasmid DNA deposited on a tantalum foil were exposed to soft X rays (effective energy of 14.8 keV) for various times in air under a relative humidity of 45% (Gamma approximately 6, where Gamma is the number of water molecules per nucleotide) and 84% (Gamma approximately 21), respectively. For a thick film, the DNA damage was induced chiefly by X-ray photons. For a thin film of DNA, X-ray-induced secondary electrons emitted from the tantalum result in a substantial increase in DNA damages. Different forms of plasmid DNA were separated and quantified by agarose gel electrophoresis and laser scanning. The exposure curves for the formation of nicked circular (single-strand break, SSB), linear (double-strand break, DSB), and interduplex crosslink forms 1 and 2 were obtained for both thick and thin films of DNA. The secondary electron enhancement factor for SSBs, DSBs and crosslinks of the thin film of DNA were derived to be 3.8 +/- 0.5, 2.9 +/- 0.7 and 7 +/- 3 at Gamma approximately 6 and 6.0 +/- 0.8, 7 +/- 1 and 3.9 +/- 0.9 at Gamma approximately 21, respectively. This study provides a molecular basis for understanding the enhanced biological effects at interfaces during diagnostic X-ray examination and radiotherapy.  相似文献   

7.
The effect of the strength of the focusing magnetic field on chaotic dynamic processes occurring in an electron beam with a virtual cathode, as well as on the processes whereby the structures form in the beam and interact with each other, is studied by means of two-dimensional numerical simulations based on solving a self-consistent set of Vlasov-Maxwell equations. It is shown that, as the focusing magnetic field is decreased, the dynamics of an electron beam with a virtual cathode becomes more complicated due to the formation and interaction of spatiotemporal longitudinal and transverse structures in the interaction region of a vircator. The optimum efficiency of the interaction of an electron beam with the electromagnetic field of the vircator is achieved at a comparatively weak external magnetic field and is determined by the fundamentally two-dimensional nature of the motion of the beam electrons near the virtual cathode.  相似文献   

8.
PurposeThis study aims to investigate the energy response of an optically stimulated luminescent dosimeter known as nanoDot for diagnostic kilovoltage X-ray beams via Monte Carlo calculations.MethodsThe nanoDot response is calculated as a function of X-ray beam quality in free air and on a water phantom surface using Monte Carlo simulations. The X-ray fluence spectra are classified using the quality index (QI), which is defined as the ratio of the effective energy to the maximum energy of the photons. The response is calculated for X-ray fluence spectra with QIs of 0.4, 0.5, and 0.6 with tube voltages of 50–137.6 kVp and monoenergetic photon beams. The surface dose estimated using the calculated response is verified by comparing it with that measured using an ionization chamber.ResultsThe nanoDot response in free air for monoenergetic photon beams (QI = 1.0) varies significantly at photon energies below 100 keV and reaches a factor of 3.6 at 25–30 keV. The response differs by up to approximately 6% between QIs of 0.4 and 0.6 for the same half-value layer (HVL). The response at the phantom surface decreases slightly owing to the backscatter effect, and it is almost independent of the field size. The agreement between the surface dose estimated using the nanoDot and that measured using the ionization chamber for assessing X-ray beam qualities is less than 2%.ConclusionsThe nanoDot response is indicated as a function of HVL for the specified QIs, and it enables the direct surface dose measurement.  相似文献   

9.
Analysis of the results of polarimetric measurements of X-ray line radiation of multicharged ions in a Z-pinch discharge indicates that the formation of an anisotropic electron velocity distribution in the neck of the current channel and the generation of highly charged ions are separated in time. The generation of a fast electron beam in the longitudinal ohmic electric field in the stage of plasma compression in the neck results in the polarization of X-ray bremsstrahlung continuum. In the stage of expansion of the hot dense micropinch plasma, the radial electric field prevails, due to which X-ray line radiation of multicharged ions becomes linearly polarized.  相似文献   

10.
We introduced a novel X-ray microscope system based on scanning electron microscopy using thin film, which enables the measurement of unstained biological samples without damage. An unstained yeast sample was adsorbed under a titanium (Ti)-coated silicon nitride (Si3N4) film 90 nm thick. The X-ray signal from the film was detected by an X-ray photodiode (PD) placed below the sample. With an electron beam at 2.6 kV acceleration and 6.75 nA current, the yeast image is obtained using the X-ray PD. The image is created by soft X-rays from the Ti layer. The Ti layer is effective in generating the characteristic 2.7-nm wavelength X-rays by the irradiation of electrons. Furthermore, we investigated the electron trajectory and the generation of the characteristic X-rays within the Ti-coated Si3N4 film by Monte Carlo simulation. Our system can be easily utilized to observe various unstained biological samples of cells, bacteria, and viruses.  相似文献   

11.
The application of microbeams is providing new insights into the actions of radiation at the cell and tissue levels. So far, this has been achieved exclusively through the use of collimated charged particles. One alternative is to use ultrasoft X rays, focused by X-ray diffractive optics. We have developed a unique facility that uses 0.2-0.8-mm-diameter zone plates to focus ultrasoft X rays to a beam of less than 1 microm diameter. The zone plate images characteristic K-shell X rays of carbon or aluminum, generated by focusing a beam of 5-10 keV electrons onto the appropriate target. By reflecting the X rays off a grazing-incidence mirror, the contaminating bremsstrahlung radiation is reduced to 2%. The focused X rays are then aimed at selected subcellular targets using rapid automated cell-finding and alignment procedures; up to 3000 cells per hour can be irradiated individually using this arrangement.  相似文献   

12.
The present work investigates preliminary feasibility and characteristics of a new type of radiation therapy modality based on a single convergent beam of photons. The proposal consists of the design of a device capable of generating convergent X-ray beams useful for radiotherapy. The main goal is to achieve high concentrated dose delivery. The first step is an analytical approach in order to characterize the dosimetric performance of the hypothetical convergent photon beam. Then, the validated FLUKA Monte Carlo main code is used to perform complete radiation transport to account also for scattering effects. The proposed method for producing convergent X-rays is mainly based on the bremsstrahlung effect. Hence the operating principle of the proposed device is described in terms of bremsstrahlung production. The work is mainly devoted characterizing the effect on the bremsstrahlung yield due to accessories present in the device, like anode material and geometry, filtration and collimation systems among others.The results obtained for in-depth dose distributions, by means of analytical and stochastic approaches, confirm the presence of a high dose concentration around the irradiated target, as expected. Moreover, it is shown how this spot of high dose concentration depends upon the relevant physical properties of the produced convergent photon beam.In summary, the proposed design for producing single convergent X-rays attained satisfactory performance for achieving high dose concentration around small targets depending on beam spot size that may be used for some applications in radiotherapy, like radiosurgery.  相似文献   

13.
Dosimetry calculations characterizing the spatial variation of the energy deposited by the slowing and stopping of energetic electrons are reported and compared with experimental measurements from an electron microbeam facility. The computations involve event-by-event, detailed-histories Monte Carlo simulations of low-energy electrons interacting in water vapor. Simulations of electron tracks with starting energies from 30 to 80 keV are used to determine energy deposition distributions in thin cylindrical rings as a function of penetration and radial distance from a beam source. Experimental measurements of the spatial distribution of an electron microbeam in air show general agreement with the density-scaled simulation results for water vapor at these energies, yielding increased confidence in the predictions of Monte Carlo track-structure simulations for applications of the microbeam as a single-cell irradiator.  相似文献   

14.
Results of numerical simulations and analysis of the formation and nonlinear dynamics of the squeezed state of a helical electron beam in a vircator with a magnetron injection gun as an electron source and with additional electron deceleration are presented. The ranges of control parameters where the squeezed state can form in such a system are revealed, and specific features of the system dynamics are analyzed. It is shown that the formation of a squeezed state of a nonrelativistic helical electron beam in a system with electron deceleration is accompanied by low-frequency longitudinal dynamics of the space charge.  相似文献   

15.
Monte Carlo simulation of electrons stopping in liquid water was used to model the penetration and quality of electron-beam irradiation incident on the full-thickness EpiDerm? skin model (EpiDermFT? MatTek, Ashland, VA). This 3D tissue model has a fully developed basement membrane separating an epidermal layer of keratinocytes in various stages of differentiation from a dermal layer of fibroblasts embedded in collagen. The simulations were motivated by a desire to selectively expose the epidermal layer to low-linear energy transfer (LET) radiation in the presence of a nonirradiated dermal layer. The variable-energy electron microbeam at the Pacific Northwest National Laboratory (PNNL) was used as a model of device characteristics and irradiation geometry. At the highest beam energy available (90 keV), we estimate that no more than a few percent of the beam energy will be deposited in the dermal layer. Energy deposition spectra were calculated for 10-μm-thick layers near the 10th, 50th and 90th percentiles of penetration by the 90 keV electron beam. Bimodal spectra showed an increasing component of "stoppers" with increasing depth, which increases the probability of large energy deposition events. Nevertheless, screening by tissue above the layer of interest is the main factor determining energy deposited at a given depth.  相似文献   

16.
17.
A model is presented for irradiation of a cellular monolayer by an electron microbeam. Results are presented for two possible window designs, cells plated on the vacuum-isolation window and cells plated on Mylar above the vacuum-isolation window. Even for the thicker dual-membrane window that facilitates tissue culture and allows the target cell to be centered relative to the electron beam, the majority of the calculated beam spreading was contained in a volume typical of the mammalian HeLa cell line. None of the 104 electrons simulated at 25 keV were scattered into the spatial region occupied by neighbors of the target cell. Dose leakage was largest at 50 keV where the mean energy deposited in all neighbors was 21% of that deposited in the target cell. This ratio was reduced to 5% at 90 keV, the highest beam energy simulated. Lineal energy spectra of energy deposition events scored in the nucleus of the target cell became progressively more like the gamma-ray spectrum as the electron beam energy increased. Hence, our simulations provide strong support for the feasibility of a low-LET, single-cell irradiator. Received: 16 March 2000 / Accepted: 9 May 2000  相似文献   

18.
Microbeam radiation therapy has demonstrated superior normal tissue sparing properties compared to broadbeam radiation fields. The ratio of the microbeam peak dose to the valley dose (PVDR), which is dependent on the X-ray energy/spectrum and geometry, should be maximised for an optimal therapeutic ratio. Simulation studies in the literature report the optimal energy for MRT based on the PVDR. However, most of these studies have considered different microbeam geometries to that at the Imaging and Medical Beamline (50 μm beam width with a spacing of 400 μm). We present the first fully experimental investigation of the energy dependence of PVDR and microbeam penumbra. Using monochromatic X-ray energies in the range 40–120 keV the PVDR was shown to increase with increasing energy up to 100 keV before plateauing. PVDRs measured for pink beams were consistently higher than those for monochromatic energies similar or equivalent to the average energy of the spectrum. The highest PVDR was found for a pink beam average energy of 124 keV. Conversely, the microbeam penumbra decreased with increasing energy before plateauing for energies above 90 keV. The effect of bone on the PVDR was investigated at energies 60, 95 and 120 keV. At depths greater than 20 mm beyond the bone/water interface there was almost no effect on the PVDR. In conclusion, the optimal energy range for MRT at IMBL is 90–120 keV, however when considering the IMBL flux at different energies, a spectrum with 95 keV weighted average energy was found to be the best compromise.  相似文献   

19.
Results from particle-in-cell simulations of the three-dimensional regime of proton acceleration in the interaction of laser radiation with a thin spherical target are presented. It is shown that the density of accelerated protons can be several times higher than that in conventional accelerators. The focusing of fast protons created in the interaction of laser radiation with a spherical target is demonstrated. The focal spot of fast protons is localized near the center of the sphere. The conversion efficiency of laser energy into fast ion energy attains 5%. The acceleration mechanism is analyzed and the electron and proton energy spectra are obtained.  相似文献   

20.
External electron radiotherapy is performed using a cone or applicator to collimate the beam. However, because of a trade-off between collimation and scattering/bremsstrahlung X-ray production, applicators generate a small amount of secondary radiation (leakage). We investigate the peripheral dose outside the radiation field of a Varian-type applicator. The dose and fluence outside the radiation field were analyzed in a detailed Monte Carlo simulation. The differences between the calculation results and data measured in a water phantom in an ionization chamber were less than ±1% in regions more than 3 mm below the surface of the phantom and at the depth of dose maximum. The calculated fluence was analyzed inside and outside the radiation field on a plane just above the water phantom surface. Changing the electron energy affected the off-axis fluence distribution outside the radiation field; however, the size of the applicator had little effect on this distribution. For each energy, the distributions outside the radiation field were similar to the dose distribution at shallow depths in the water phantom. The effect of secondary electrons generation by photon transmission through the alloy making up the lowest scraper was largest in the region from the field edge to directly below the cutout and at higher beam energies. The results of the Monte Carlo simulation confirm that the peripheral dose outside the field is significantly affected by radiation scattered or transmitted from the applicator, and the effect increases with the electron energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号