首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endocytosis of Notch receptor ligands in signaling cells is essential for Notch receptor activation. In Drosophila, the E3 ubiquitin ligase Neuralized (Neur) promotes the endocytosis and signaling activity of the ligand Delta (Dl). In this study, we identify proteins of the Bearded (Brd) family as interactors of Neur. We show that Tom, a prototypic Brd family member, inhibits Neur-dependent Notch signaling. Overexpression of Tom inhibits the endocytosis of Dl and interferes with the interaction of Dl with Neur. Deletion of the Brd gene complex results in ectopic endocytosis of Dl in dorsal cells of stage 5 embryos. This defect in Dl trafficking is associated with ectopic expression of the single-minded gene, a direct Notch target gene that specifies the mesectoderm. We propose that inhibition of Neur by Brd proteins is important for precise spatial regulation of Dl signaling.  相似文献   

2.
Endocytosis of the transmembrane ligands Delta (Dl) and Serrate (Ser) is required for the proper activation of Notch receptors. The E3 ubiquitin ligases Mindbomb1 (Mib1) and Neuralized (Neur) regulate the ubiquitination of Dl and Ser and thereby promote both ligand endocytosis and Notch receptor activation. In this study, we identify the α1,4-N-acetylgalactosaminyltransferase-1 (α4GT1) gene as a gain of function suppressor of Mib1 inhibition. Expression of α4GT1 suppressed the signaling and endocytosis defects of Dl and Ser resulting from the inhibition of mib1 and/or neur activity. Genetic and biochemical evidence indicate that α4GT1 plays a regulatory but nonessential function in Notch signaling via the synthesis of a specific glycosphingolipid (GSL), N5, produced by α4GT1. Furthermore, we show that the extracellular domain of Ser interacts with GSLs in vitro via a conserved GSL-binding motif, raising the possibility that direct GSL–protein interactions modulate the endocytosis of Notch ligands. Together, our data indicate that specific GSLs modulate the signaling activity of Notch ligands.  相似文献   

3.
DSL proteins are transmembrane ligands of the Notch receptor. They associate with a RING (really interesting new gene) family E3 ubiquitin ligase, either Neuralized (Neur) or Mindbomb 1 (Mib1), as a prerequisite to signaling. Although Neur and Mib1 stimulate internalization of DSL ligands, it is not known how ubiquitylation contributes to signaling. We present a molecular dissection of the intracellular domain (ICD) of Drosophila melanogaster Delta (Dl), a prototype DSL protein. Using a cell-based assay, we detected ubiquitylation of Dl by both Neur and Mib1. The two enzymes use distinct docking sites and displayed different acceptor lysine preferences on the Dl ICD. We generated Dl variants that selectively perturb its interactions with Neur or Mib1 and analyzed their signaling activity in two in vivo contexts. We found an excellent correlation between the ability to undergo ubiquitylation and signaling. Therefore, ubiquitylation of the DSL ICD seems to be a necessary step in the activation of Notch.  相似文献   

4.
5.
Signaling by the Notch (N) pathway is critical for many developmental processes and requires complex trafficking of both the N receptor and its transmembrane ligands, Delta (Dl) and Serrate. neuralized encodes an E3 ubiquitin ligase required for N ligand internalization. Neuralized (Neur) is conserved from worms to humans and comprises two Neur homology repeat (NHR) domains, NHR1 and NHR2, and a carboxyl-terminal RING domain. We have previously shown that the RING domain is required for ubiquitin ligase activity and that NHR1 mediates binding to Dl, a ubiquitination target. In Drosophila, Neur associates with the plasma membrane and hepatocyte responsive serum phosphoprotein-positive endosomes. Here we demonstrate that Neur also exhibits nuclear envelope localization. We have determined that Neur subcellular localization is regulated by nuclear trafficking and that inhibition of chromosome region maintenance 1, a nuclear export receptor, interferes with Neur nuclear export, trapping Neur in the nucleus. Moreover, we demonstrate that nuclear envelope localization is mediated by the Neur NHR1 domain. Interestingly, Dl expression in Schneider cells is sufficient to inhibit Neur nuclear import and inhibition occurs in an NHR1-dependent manner, suggesting that Neur nuclear localization occurs in contexts where Dl expression is either low or absent. Consistent with this, we found that Neur exhibits nuclear trafficking and associates with the nuclear envelope in the secretory cells of the larval salivary gland and that overexpression of Dl can reduce Neur localization to the nucleus. Altogether, our data demonstrate that Neur localizes to the nuclear envelope and that this localization can be negatively regulated by Dl, suggesting a possible nuclear function for Neur in Drosophila.  相似文献   

6.
In the imaginal tissue of developing fruit flies, achaete (ac) and scute (sc) expression defines a group of neurally-competent cells called the proneural cluster (PNC). From the PNC, a single cell, the sensory organ precursor (SOP), is selected as the adult mechanosensory organ precursor. The SOP expresses high levels of ac and sc and sends a strong Delta (Dl) signal, which activates the Notch (N) receptor in neighboring cells, preventing them from also adopting a neural fate. Previous work has determined how ac and sc expression in the PNC and SOP is regulated, but less is known about SOP-specific factors that promote SOP fate. Here, we describe the role of nervy (nvy), the Drosophila homolog of the mammalian proto-oncogene ETO, in mechanosensory organ formation. Nvy is specifically expressed in the SOP, where it interacts with the Ac and Sc DNA binding partner Daughterless (Da) and affects the expression of Ac and Sc targets. nvy loss- and gain-of-function experiments suggest that nvy reinforces, but is not absolutely required for, the SOP fate. We propose a model in which nvy acts downstream of ac and sc to promote the SOP fate by transiently strengthening the Dl signal emanating from the SOP.  相似文献   

7.
Notch signaling constitutes an evolutionarily conserved mechanism that mediates cell-cell interactions in various developmental processes. Numerous regulatory proteins interact with the Notch receptor and its ligands and control signaling at multiple levels. Ubiquitination and endocytosis followed by endosomal sorting of both the receptor and its ligands is essential for Notch-mediated signaling. The E3 ubiquitin ligases, Neuralized (Neur) and Mind Bomb (Mib1), are crucial for regulating the activity and stability of Notch ligands in Drosophila; however, biochemical evidence that the Notch ligands are directly targeted for ubiquitination by Neur and/or Mib1 has been lacking. In this report, we explore the function of Neurl1, a mouse ortholog of Drosophila Neur. We show that Neurl1 can function as an E3 ubiquitin ligase to activate monoubiquitination in vitro of Jagged1, but not other mammalian Notch ligands. Neurl1 expression decreases Jagged1 levels in cells and blocks signaling from Jagged1-expressing cells to neighboring Notch-expressing cells. We demonstrate that Neurl1 is myristoylated at its N terminus, and that myristoylation of Neurl1 targets it to the plasma membrane. Point mutations abolishing either Neurl1 myristoylation and plasma membrane localization or Neurl1 ubiquitin ligase activity impair its ability to down-regulate Jagged1 expression and to block signaling. Taken together, our results argue that Neurl1 at the plasma membrane can affect the signaling activity of Jagged1 by directly enhancing its ubiquitination and subsequent turnover.  相似文献   

8.
The Notch pathway plays an integral role in development by regulating cell fate in a wide variety of multicellular organisms. A critical step in the activation of Notch signaling is the endocytosis of the Notch ligands Delta and Serrate. Ligand endocytosis is regulated by one of two E3 ubiquitin ligases, Neuralized (Neur) or Mind bomb. Neur is comprised of a C-terminal RING domain, which is required for Delta ubiquitination, and two Neur homology repeat (NHR) domains. We have previously shown that the NHR1 domain is required for Delta trafficking. Here we show that the NHR1 domain also affects the binding and internalization of Serrate. Furthermore, we show that the NHR2 domain is required for Neur function and that a point mutation in the NHR2 domain (Gly430) abolishes Neur ubiquitination activity and affects ligand internalization. Finally, we provide evidence that Neur can form oligomers in both cultured cells and fly tissues, which regulate Neur activity and, by extension, ligand internalization.  相似文献   

9.
10.
Activation of the Notch (N) receptor involves an intracellular proteolytic step triggered by shedding of the extracellular N domain (N-EC) upon ligand interaction. The ligand Dl has been proposed to effect this N-EC shedding by transendocytosing the latter into the signal-emitting cell. We find that Dl endocytosis and N signaling are greatly stimulated by expression of neuralized (neur). neur inactivation suppresses Dl endocytosis, while its overexpression enhances Dl endocytosis and Notch-dependent signaling. We show that neur encodes an intracellular peripheral membrane protein. Its C-terminal RING domain is necessary for Dl accumulation in endosomes, but may be dispensable for Dl signaling. The potent modulatory effect of Neur on Dl activity makes Neur a candidate for establishing signaling asymmetries within cellular equivalence groups.  相似文献   

11.
Planar cell polarity (PCP) is a common feature in many epithelia, reflected in cellular organization within the plane of an epithelium. In the Drosophila eye, Frizzled (Fz)/PCP signaling induces cell-fate specification of the R3/R4 photoreceptors through regulation of Notch activation in R4. Except for Dl upregulation in R3, the mechanism of how Fz/PCP signaling regulates Notch in this context is not understood. We demonstrate that the E3-ubiquitin ligase Neuralized (Neur), required for Dl-N signaling, is asymmetrically expressed within the R3/R4 pair. It is required in R3, where it is also upregulated in a Fz/PCP-dependent manner. As is the case for Dl, N activity in R4 further represses neur expression, thus, reinforcing the asymmetry. We demonstrate that Neur asymmetry is instructive in correct R3/R4 specification. Our data indicate that Fz/PCP-dependent Neur expression in R3 ensures the proper directionality of Dl-N signaling during R3/R4 specification.  相似文献   

12.
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure–function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.  相似文献   

13.
Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.  相似文献   

14.
The Notch pathway represents a highly conserved signaling network, which regulates the formation and maintenance of various organ systems along development and during adulthood. Direct cell-cell contacts between ligand- and receptor-expressing cells underlie activation of the Notch pathway. Notch signaling requires endocytosis in both signal emitting and receiving cells. Recent findings on the roles of a number of modulators show that they act either on the maintenance of an active receptor at the membrane, or on the production of active ligand, or on signal transduction after activation.  相似文献   

15.
In Drosophila melanogaster, external sensory organs develop from a single sensory organ precursor (SOP). The SOP divides asymmetrically to generate daughter cells, whose fates are governed by differential Notch activation. Here we show that the clathrin adaptor AP-1 complex, localized at the trans Golgi network and in recycling endosomes, acts as a negative regulator of Notch signaling. Inactivation of AP-1 causes ligand-dependent activation of Notch, leading to a fate transformation within sensory organs. Loss of AP-1 affects neither cell polarity nor the unequal segregation of the cell fate determinants Numb and Neuralized. Instead, it causes apical accumulation of the Notch activator Sanpodo and stabilization of both Sanpodo and Notch at the interface between SOP daughter cells, where DE-cadherin is localized. Endocytosis-recycling assays reveal that AP-1 acts in recycling endosomes to prevent internalized Spdo from recycling toward adherens junctions. Because AP-1 does not prevent endocytosis and recycling of the Notch ligand Delta, our data indicate that the DE-cadherin junctional domain may act as a launching pad through which endocytosed Notch ligand is trafficked for signaling.  相似文献   

16.
Signaling by the Notch ligands Delta (Dl) and Serrate (Ser) regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur) and Mind bomb (Mib), have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib) gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.  相似文献   

17.
Enhanced gene activation by Notch and BMP signaling cross-talk   总被引:6,自引:1,他引:5  
  相似文献   

18.
Gastrointestinal (GI) carcinoid cells secrete multiple neuroendocrine (NE) markers and hormones including 5-hydroxytryptamine and chromogranin A. We were interested in determining whether activation of the Notch1 signal transduction pathway in carcinoid cells could modulate production of NE markers and hormones. Human pancreatic carcinoid cells (BON cells) were stably transduced with an estrogen-inducible Notch1 construct, creating BON-NIER cells. In the present study, we found that Notch1 is not detectable in human GI carcinoid tumor cells. The induction of Notch1 in human BON carcinoid cells led to high levels of functional Notch1, as measured by CBF-1 binding studies, resulting in activation of the Notch1 pathway. Similar to its developmental role in the GI tract, Notch1 pathway activation led to an increase in hairy enhancer of split 1 (HES-1) protein and a concomitant silencing of human Notch1/HES-1/achaete-scute homolog 1. Furthermore, Notch1 activation led to a significant reduction in NE markers. Most interestingly, activation of the Notch1 pathway caused a significant reduction in 5-hydroxytryptamine, an important bioactive hormone in carcinoid syndrome. In addition, persistent activation of the Notch1 pathway in BON cells led to a notable reduction in cellular proliferation. These results demonstrate that the Notch1 pathway, which plays a critical role in the differentiation of enteroendocrine cells, is highly conserved in the gut. Therefore, manipulation of the Notch1 signaling pathway may be useful for expanding the targets for therapeutic and palliative treatment of patients with carcinoid tumors.  相似文献   

19.
Two glycosyltransferases that transfer sugars to EGF domains, OFUT1 and Fringe, regulate Notch signaling. However, sites of O-fucosylation on Notch that influence Notch activation have not been previously identified. Moreover, the influences of OFUT1 and Fringe on Notch activation can be positive or negative, depending on their levels of expression and on whether Delta or Serrate is signaling to Notch. Here, we describe the consequences of eliminating individual, highly conserved sites of O-fucose attachment to Notch. Our results indicate that glycosylation of an EGF domain proposed to be essential for ligand binding, EGF12, is crucial to the inhibition of Serrate-to-Notch signaling by Fringe. Expression of an EGF12 mutant of Notch (N-EGF12f) allows Notch activation by Serrate even in the presence of Fringe. By contrast, elimination of three other highly conserved sites of O-fucosylation does not have detectable effects. Binding assays with a soluble Notch extracellular domain fusion protein and ligand-expressing cells indicate that the NEGF12f mutation can influence Notch activation by preventing Fringe from blocking Notch-Serrate binding. The N-EGF12f mutant can substitute for endogenous Notch during embryonic neurogenesis, but not at the dorsoventral boundary of the wing. Thus, inhibition of Notch-Serrate binding by O-fucosylation of EGF12 might be needed in certain contexts to allow efficient Notch signaling.  相似文献   

20.
RUNX3 takes a strong suppressive effect in many tumors including hepatocellular carcinoma (HCC). HES-1, a downstream target of Notch signaling, is shown to be decreased in human HCC cell line SMMC7721 with RUNX3 gene transfection. Since Notch signaling is oncogenic in HCC, RUNX3 might exert its inhibitory effect in HCC partly through the suppression on Notch signaling. To investigate the possible mechanism of the down-regulation of HES-1 by RUNX3, we performed Western blot and reporter assay and found that RUNX3 suppressed intracellular domain of Notch1 (ICN1)-mediated transactivation of Notch signaling while it did not alter the expression of ICN1 and recombination signal binding protein-Jκ (RBP-J) in SMMC7721 cells. Besides, confocal microscopy, co-immunoprecipitation and GST pull-down assays showed that RUNX3 could co-localize with ICN1 and RBP-J, forming a complex with these two molecules in nucleus of SMMC7721 cells by its direct interaction with ICN1. Furthermore, RUNX3 was recruited to RBP-J recognition motif of HES-1 promoter, which was identified by chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Taken together, these findings indicate that RUNX3 suppresses Notch signaling in HCC SMMC7721 cells by its interaction with ICN1 and thus recruitment to the RBP-J recognition motif of downstream genes of Notch signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号