首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Asparagine utilization in Escherichia coli   总被引:5,自引:4,他引:1       下载免费PDF全文
Asparagine-requiring auxotrophs of Escherichia coli K-12 that have an active cytoplasmic asparaginase do not conserve asparagine supplements for use in protein synthesis. Asparagine molecules entering the cell in excess of the pool required for use of this amino acid in protein synthesis are rapidly degraded rather than accumulated. Supplements are conserved when asparagine degradation is inhibited by the asparagine analogue 5-diazo-4-oxo-l-norvaline (DONV) or mutation to cytoplasmic asparaginase deficiency. A strain deficient in cytoplasmic asparaginase required approximately 260 mumol of asparagine for the synthesis of 1 g of cellular protein. The cytoplasmic asparaginase (asparaginase I) is required for growth of cells when asparagine is the nitrogen source. This enzyme has an apparent K(m) for l-asparagine of 3.5 mM, and asparaginase activity is competitively inhibited by DONV with an apparent K(i) of 2 mM. The analogue provides a time-dependent, irreversible inhibition of cytoplasmic asparaginase activity in the absence of asparagine.  相似文献   

2.
Asparagine, a major transport compound, is metabolized in Pisum sativum by two enzymes, asparaginase (EC 3.5.1.1) and asparagine-pyruvate aminotransferase. The relative amount of the two enzymes varies between tissues. In developing seeds, there are very high levels of asparaginase but only trace amounts of the aminotransferase. Asparaginase is high in young leaves but falls rapidly during leaf growth; the aminotransferase remains high throughout development. Inhibitor studies with aminooxyacetate and methionine sulfoximine confirm that the aminotransferase is the main enzyme involved in asparagine utilisation in the leaf. Root tissue has low levels of asparaginase and only trace amounts of the aminotransferase. The asparaginase is potassium dependent, but is also partially activated by ammonium ions. The leaf aminotransferase has a lower K m for asparagine (4.5 mM) than the leaf asparaginase (8 mM). The seed asparaginase has a lower K m for asparagine (3 mM) than the leaf asparaginase.  相似文献   

3.
4.
Asparaginase was purified from Helicobacter pylori 26695 and its pathophysiological role explored. The K(m) value of asparagine was 9.75 ± 1.81 μM at pH 7.0, and the optimum pH range was broad and around a neutral pH. H. pylori asparaginase converted extracellular asparagine to aspartate. H. pylori cells were unable to take up extracellular asparagine directly. Instead, aspartate produced by the action of the asparaginase was transported into H. pylori cells, where it was partially converted to β-alanine. Asparaginase exhibited striking cytotoxic activity against histiocytic lymphoma cell line U937 cells via asparagine deprivation. The cytotoxic activity of live H. pylori cells against U937 cells was significantly diminished by deletion of the asparaginase gene, indicating that asparaginase functions as a cytotoxic agent of the bacterium. The cytotoxic effect was negligible for gastric epithelial cell line AGS cells, suggesting that the effect differs across host cell types. An asparaginase-deficient mutant strain was significantly less capable of colonizing Mongolian gerbils. Since asparagine depletion by exogenous asparaginase has been shown to suppress lymphocyte proliferation in vivo, the present results suggest that H. pylori asparaginase may be involved in inhibition of normal lymphocyte function at the gastric niche, allowing H. pylori to evade the host immune system.  相似文献   

5.
Asparaginase depletes circulating asparagine and glutamine, activating amino acid deprivation responses (AADR) such as phosphorylation of eukaryotic initiation factor 2 (p-eIF2) leading to increased mRNA levels of asparagine synthetase and CCAAT/enhancer-binding protein β homologous protein (CHOP) and decreased mammalian target of rapamycin complex 1 (mTORC1) signaling. The objectives of this study were to assess the role of the eIF2 kinases and protein kinase R-like endoplasmic reticulum resident kinase (PERK) in controlling AADR to asparaginase and to compare the effects of asparaginase on mTORC1 to that of rapamycin. In experiment 1, asparaginase increased hepatic p-eIF2 in wild-type mice and mice with a liver-specific PERK deletion but not in GCN2 null mice nor in GCN2-PERK double null livers. In experiment 2, wild-type and GCN2 null mice were treated with asparaginase (3 IU per g of body weight), rapamycin (2 mg per kg of body weight), or both. In wild-type mice, asparaginase but not rapamycin increased p-eIF2, p-ERK1/2, p-Akt, and mRNA levels of asparagine synthetase and CHOP in liver. Asparaginase and rapamycin each inhibited mTORC1 signaling in liver and pancreas but maximally together. In GCN2 null livers, all responses to asparaginase were precluded except CHOP mRNA expression, which remained partially elevated. Interestingly, rapamycin blocked CHOP induction by asparaginase in both wild-type and GCN2 null livers. These results indicate that GCN2 is required for activation of AADR to asparaginase in liver. Rapamycin modifies the hepatic AADR to asparaginase by preventing CHOP induction while maximizing inhibition of mTORC1.  相似文献   

6.
Growth of weanling rats was significantly depressed after 8 days of asparagine depletion produced by dietary means or by asparaginase treatment. Moreover, the concentration of free asparagine was significantly lowered in forebrain, skeletal muscle, liver, kidney, spleen and small intestines 3 h after an asparaginase injection, but remained lowered only in forebrain and skeletal muscle after 8 days of enzymic or dietary depletion of asparagine.  相似文献   

7.
The enzyme asparaginase, which hydrolyses asparagine to aspartic acid, inhibited cell-free protein synthesis by reticulocyte lysates. The inhibition was rapid and complete when sufficient enzyme was added but could be prevented or reversed by the addition of asparagine. The initial effect of asparaginase appears to be a block in polypeptide chain elongation due to asparagine deprivation, but there are some indications that prolonged incubation under these conditions may give rise to a secondary decrease in initiation of protein synthesis.  相似文献   

8.
Asparaginase reduces the levels of asparagine in blood, which is an essential amino acid for the proliferation of lymphoblastic malign cells. Asparaginase converts asparagine into aspartic acid and ammonia. The accumulation of ammonia in the bloodstream leads to hyperammonemia, described as one of the most significant side effects of asparaginase therapy. Therefore, there is a need for asparaginase formulations with the potential to reduce hyperammonemia. We incorporated 2 % of therapeutic enzyme in albumin-based capsules. The presence of asparaginase in the interface of bovine serum albumin (BSA) capsules showed the ability to hydrolyze the asparagine and retain the forming ammonia at the surface of the capsules. The incorporation of Poloxamer 407 in the capsule formulation further increased the ratio aspartic acid/ammonia from 1.92 to 2.46 (and 1.10 from the free enzyme), decreasing the levels of free ammonia. This capacity to retain ammonia can be due to electrostatic interactions and retention of ammonia at the surface of the capsules. The developed BSA/asparaginase capsules did not cause significant cytotoxic effect on mouse leukemic macrophage cell line RAW 264.7. The new BSA/asparaginase capsules could potentially be used in the treatment of acute lymphoblastic leukemia preventing hyperammonemia associated with acute lymphoblastic leukemia (ALL) treatment with asparaginase.  相似文献   

9.
L-asparaginase is important in the induction regimen for treating acute lymphoblastic leukemia. Cytotoxic complications are clinically significant problems lacking mechanistic insight. To reveal tissue-specific molecular responses to this drug, mice were administered asparaginase from either Escherichia coli (clinically used) or Wolinella succinogenes (novel, glutaminase-free form). Both enzymes abolished serum asparagine, but only the E. coli form reduced circulating glutamine. E. coli asparaginase reduced protein synthesis in liver and spleen but not pancreas via increased phosphorylation of the translation factor eIF2. In contrast, treatment with Wolinella caused no untoward changes in protein synthesis in any tissue examined. Treating mice deleted for the eIF2 kinase, GCN2, with the E. coli enzyme showed eIF2 phosphorylation to be GCN2-dependent, but only initially. Furthermore, although eIF2 phosphorylation was not increased in the pancreas or by Wolinella asparaginase, expression of the amino acid stress response genes, asparagine synthetase and CHOP/GADD153, increased as a result of both enzymes, even in tissues demonstrating no change in eIF2 phosphorylation. Finally, signaling downstream of the mammalian target of rapamycin kinase was repressed in liver and pancreas by E. coli but not Wolinella asparaginase. These data demonstrate that the nutrient stress response to asparaginase is tissue-specific and exacerbated by glutamine depletion. Importantly, increased expression of asparagine synthetase and CHOP does not require eIF2 phosphorylation, signifying alternate or auxiliary means of inducing gene expression under conditions of amino acid depletion in the whole animal.  相似文献   

10.
Two enzymes that catalyze the hydrolysis of l-asparagine have been isolated from extracts of Pseudomonas geniculata. After initial salt fractionation, the enzymes were separated by chromatography on diethylaminoethyl-Sephadex and purified to homogeneity by gel filtration, ion-exchange chromatography, and preparative polyacrylamide electrophoresis. The enzymes differ markedly in physicochemical properties. One enzyme, termed asparaginase A, has a molecular weight of approximately 96,000 whereas the other, termed asparaginase AG, has a molecular weight of approximately 135,000. Both enzymes are tetrameric. The asparaginase A shows activity only with l-asparagine as substrate, whereas the asparaginase AG hydrolyzes l-asparagine and l-glutamine at approximately equal rates and it is also active with d-asparagine and d-glutamine as substrates. The asparaginase A was found to be devoid of antitumor activity in mice, whereas the asparaginase AG was effective in increasing the mean survival times of both C3H mice carrying the asparagine-requiring Gardner 6C3HED tumor line and Swiss mice bearing the glutamine-requiring Ehrlich ascites tumor line. These differences in antitumor activity were related to differences in the K(m) values for l-asparagine for the two enzymes. The asparaginase A has a K(m) value of 1 x 10(-3) M for this substrate whereas the corresponding value for the AG enzyme is 1.5 x 10(-5) M. Thus the concentration of asparagine necessary for maximal activity of the asparaginase A is very high compared with that of the normal plasma level of asparagine, which is approximately 50 muM.  相似文献   

11.
Three enzymes which catalyze the hydrolysis of L-asparagine have been identified in extracts of Citrobacter freundii. One of these (asparaginase-glutaminase (EC 3.5.1.1) also shows substantial glutaminase activity. This enzyme is extremely labile, is sensitive to inactivation by p-chloromercuribenzoate, and is not protected by dithiothreitol. A second enzyme (asparaginase B) is also sensitive to mercurials but is protected from inactivation by dithiothreitol. This enzyme has a relatively low affinity for L-asparagine (Km = 1.7-10(-3) M). The third enzyme (asparaginase A) is insensitive to inactivation by mercurials, is stable upon long term storage and has a relatively high affinity for L-asparagine (Km = 2.9-10(-5) M). This enzyme has been purified to homogeneity and has a molecular weight of approx. 140 000; the subunit weight being approx. 33 000. The C. freundii asparaginase A produced significant increases in the survival time of C3H/HE mice carrying the 6C3HED lymphoma tumor.  相似文献   

12.
13.
Our long-term goal is the design of a human l-asparaginase (hASNase3) variant, suitable for use in cancer therapy without the immunogenicity problems associated with the currently used bacterial enzymes. Asparaginases catalyze the hydrolysis of the amino acid asparagine to aspartate and ammonia. The key property allowing for the depletion of blood asparagine by bacterial asparaginases is their low micromolar KM value. In contrast, human enzymes have a millimolar KM for asparagine. Toward the goal of engineering an hASNase3 variant with micromolar KM, we conducted a structure/function analysis of the conserved catalytic threonine triad of this human enzyme. As a member of the N-terminal nucleophile family, to become enzymatically active, hASNase3 must undergo autocleavage between residues Gly167 and Thr168. To determine the individual contribution of each of the three conserved active-site threonines (threonine triad Thr168, Thr186, Thr219) for the enzyme-activating autocleavage and asparaginase reactions, we prepared the T168S, T186V and T219A/V mutants. These mutants were tested for their ability to cleave and to catalyze asparagine hydrolysis, in addition to being examined structurally. We also elucidated the first N-terminal nucleophile plant-type asparaginase structure in the covalent intermediate state. Our studies indicate that, while not all triad threonines are required for the cleavage reaction, all are essential for the asparaginase activity. The increased understanding of hASNase3 function resulting from these studies reveals the key regions that govern cleavage and the asparaginase reaction, which may inform the design of variants that attain a low KM for asparagine.  相似文献   

14.
The formation of beta-aspartyl-glycine from asparagine and glycine was demonstrated in the supernatant of rat kidney. The enzyme involved in this process was partially purified. Based on the properties of the enzyme reaction and the coincidence of purification rates of this activity and asparaginase, it can be speculated that the enzyme is a kind of asparaginase. Examination of the preference for beta-aspartyl donors and acceptors showed that asparagine and glycine were the preferred donor and acceptor, respectively. beta-Aspartyl dipeptides also transferred their aspartyl residues to amino acids. Amino acids other than glycine also accepted the aspartyl moiety from the donors.  相似文献   

15.
L-asparagine uptake in Escherichia coli.   总被引:1,自引:1,他引:0       下载免费PDF全文
The uptake of L-asparagine by Escherichia coli K-12 is characterized by two kinetic components with apparent Km values of 3.5 muM and 80 muM. The 3.5 muM Km system displays a maximum velocity of 1.1 nmol/min per mg of protein, which is a low value when compared with derepressed levels of other amino acid transport systems but is relatively specific for L-asparagine. Compounds providing effective competition for L-asparagine uptake were 4-carbon analogues of the L-isomer with alterations at the beta-amide position, i.e., 5-diazo-4-oxo-L-norvaline (Ki = 4.6 muM), beta-hydroxyamyl-L-aspartic acid (Ki = 10 muM), and L-aspartic acid (Ki = 50 muM). Asparagine uptake is energy dependent and is inhibited by a number of metabolic inhibitors. In a derived strain of E. coli deficient in cytoplasmic asparaginase activity asparagine can be accumulated several-fold above the apparent biosynthetic pool of the amino acid and 100-fold above the external medium. The high affinity system is repressed by culture of cells with L-asparagine supplements in excess of 1 mM and is suggested to be necessary for growth of E. coli asparagine auxotrophs with lower supplement concentrations.  相似文献   

16.
D M Maul  S M Schuster 《Life sciences》1982,30(12):1051-1057
Methotrexate was found to stimulate asparagine synthetase activity in vivo by approximately six-fold in rat liver. The maximum effect of methotrexate on hepatic asparagine synthetase activity was observed sixteen hours after intraperitoneal injection of the drug. Cycloheximide, like methotrexate, is a protein synthesis inhibitor and was used to determine that asparagine synthetase activity was not preferentially stimulated under stress. As expected, hepatic asparagine synthetase activity falls markedly with the decreased protein synthesis caused by injection of cycloheximide. It is proposed that methotrexate inhibits serine-dependent glycine biosyn-thesis by decreasing the concentration of tetrahydrofolate for serine hydroxymethyltransferase. This leads to a stimulation of asparagine synthetase to provide nitrogen for asparagine-dependent glycine synthesis. This may provide an explanation of the observed chemotherapeutic synergism between asparaginase and methotrexate treatment.  相似文献   

17.
The biosynthesis of asparaginase II in Saccharomyces cerevisiae is sensitive to nitrogen catabolite repression. In cell cultures growing in complete ammonia medium, asparaginase II synthesis is repressed in the early exponential phase but becomes derepressed in the midexponential phase. When amino acids such as glutamine or asparagine replace ammonium ion in the growth medium, the enzyme remains repressed into the late exponential phase. The three nitrogen compounds permit a similar rate of cell growth and are assimilated at nearly the same rate. In the early exponential phase the internal amino acid pool is larger in cells growing with glutamine or asparagine than in cells growing with ammonium sulfate as the sole source of nitrogen.  相似文献   

18.
Aspergillus nidulans asparaginase activity may be assayed conductimetrically. The method is based on the increase of conductivity which is due to the production of ammonia and/or aspartate in a reaction mixture containing A. nidulans cell-free extract and asparagine or aspartate hydroxamate. This conductivity is linear with time and enzyme concentration and it follows Michaelis kinetics. Conductimetric activity was not detectable in mutants lacking asparaginase activity.  相似文献   

19.
Pea leaf asparaginase is stabilized by asparagine and aspartateduring incubation. In crude extracts this effect was enhancedby products of the light reaction (NADPH, NADH, or reduced ferredoxin),but these compounds were ineffective on the purified enzyme,or in the absence of asparagine. MgATP, MgADP and oxidized ferredoxinreduced asparaginase activity in purified preparation reducedor oxidized glutathione had no effect. Asparaginase activitydoes not appear to be modulated via phosphorylation/dephosphorylation.The presence of calcium during extraction increased asparaginaseactivity more than 2-fold, but addition of calcium to extractsprepared in its absence had no effect; calmodulin had no effecton activity. Co-extraction of light- and dark-treated tissueshowed that soluble factors are not responsible for the diurnalvariation in asparaginase activity. Association of asparaginasewith membranes did not account for changes in extractable activity.Use of the protein synthesis inhibitors cycloheximide, puromycin,emetine, actinomycin D and cordycepin and the thiol proteaseinhibitor leupeptin suggested that mRNA and protein synthesisare required for the increase of asparaginase activity duringthe light period and that proteolytic degradation accounts forthe decrease during the dark. Key words: Pisum sativum, asparaginase, protein synthesis, proteolysis.  相似文献   

20.
Sequence analysis of enzymes with asparaginase activity   总被引:4,自引:0,他引:4  
Asparaginases catalyze the hydrolysis of asparagine to aspartic acid and ammonia. Enzymes with asparaginase activity play an important role both in the metabolism of all living organisms as well as in pharmacology. The main goal of this paper is to attempt a classification of all known enzymes with asparaginase activity, based on their amino acid sequences. Some possible phylogenetic consequences are also discussed using dendrograms and structural information derived from crystallographic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号