首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The antibiotic-producing ability of 57 bacteria isolated from 8 marine sedentary organisms, 6 sponges (Spirastrella sp.,Phyllospongia sp.,Ircinia sp.,Aaptos sp.,Azorica sp.,Axinella sp.), 1 soft coral (Lobophytum sp.) and 1 alga (Sargassum sp.), was evaluated against 6 phytopathogenic fungi (Helminthosporium oryzae, Rhizoctonium solani, Pyricularia oryzae, Fusarium oxysporum, Aspergillus oryzae andA. fumigatus). Bacteria of the genusBacillus (20%),Pseudomonas (33%) andFlavobacterium (40%) were predominant among the heterotrophic bacteria isolated from the marine sponges, soft coral and alga, respectively. Bioassay results revealed that 36 (63%) bacterial isolates displayed antifungal activity against at least one fungus, the alga (Sargassum sp.) being the source of highest number (80%) of producer strains. Twelve bacterial isolates inhibited all fungi. The MIC of the organic extracts of 12 bacteria ranged from 0.3 to 22.8 mg/L.  相似文献   

2.
【背景】马蜂(Vespa mandarinia Smith)可以防治多种田间害虫,还具有药用价值,其肠道菌群结构和功能还有待研究。【目的】获得马蜂肠道可培养细菌并筛选出具有产消化酶功能的菌株,为理解肠道菌对宿主的影响机理及功能菌株的利用提供科学依据和研究材料。【方法】采用传统细菌分离培养法获得马蜂肠道菌,结合形态学以及16S rRNA基因序列分析进行鉴定;利用水解圈法分别筛选产蛋白酶、脂肪酶、淀粉酶和纤维素酶菌株;通过测量水解圈D与菌落直径d的比值,比较不同细菌的产酶能力。【结果】在马蜂肠道中共分离出6属10种细菌,其中芽孢杆菌属5种,肠球菌属、葡萄球菌属、明串珠菌属、乳球菌属和不动杆菌属各1种。从获得的61个菌株中筛选出6个具有产消化酶功能的菌株。其中,苏云金芽孢杆菌V44具有产蛋白酶、淀粉酶、脂肪酶和纤维素酶4种消化酶的能力;粪肠球菌V6具有产淀粉酶、蛋白酶和脂肪酶3种消化酶的能力;蜡样芽孢杆菌V43具有产蛋白酶、淀粉酶和纤维素酶3种消化酶的能力;粪肠球菌V20、蜡样芽孢杆菌V19和维德曼氏芽孢杆菌V22均具有产蛋白酶的能力。【结论】马蜂肠道细菌资源较丰富,部分有产消化酶的功能,可帮助马蜂消化食物,对宿主健康有一定影响。本研究筛选的6个菌株都能产蛋白酶,其中菌株V43和V44分别具有最强产淀粉酶和脂肪酶的能力,是可进一步开发利用的肠道功能菌株资源。  相似文献   

3.
Culturable bacterial diversity of seven marine sediment samples of Kongsfjorden and a sediment and a soil sample from Ny-Ålesund, Svalbard, Arctic was studied. The bacterial abundance in the marine sediments of Kongsfjorden varied marginally (0.5 × 103–1.3 × 104 cfu/g sediment) and the bacterial number in the two samples collected from the shore of Ny-Ålesund also was very similar (0.6 × 104 and 3.4 × 104, respectively). From the nine samples a total of 103 bacterial isolates were obtained and these isolates could be grouped in to 47 phylotypes based on the 16S rRNA gene sequence belonging to 4 phyla namely Actinobacteria, Bacilli, Bacteroidetes and Proteobacteria. Representatives of the 47 phylotypes varied in their growth temperature range (4–37°C), in their tolerance to NaCl (0.3–2 M NaCl) and growth pH range (2–11). Representatives of 26 phylotypes exhibited amylase and lipase activity either at 5 or 20°C or at both the temperatures. A few of the representatives exhibited amylase and/or lipase activity only at 5°C. None of the phylotypes exhibited protease activity. Most of the phylotypes (38) were pigmented. Fatty acid profile studies indicated that short chain fatty acids, unsaturated fatty acids, branched fatty acids, the cyclic and the cis fatty acids are predominant in the psychrophilic bacteria.  相似文献   

4.
The present study demonstrates the metal toxicity ameliorating and growth promoting abilities of three different bacterial isolates when applied to rice as host plant. The three bacterial strains included a cadmium resistant Ochrobactrum sp., a lead resistant Bacillus sp. and an arsenic resistant Bacillus sp. designated as CdSP9, PbSP6, and AsSP9, respectively. When these isolates were used as inocula applied to metal-treated rice plants of variety Satabdi, the germination percentage, relative root elongation (RRE), amylase and protease activities were increased. The toxic effect of metal was reduced in presence of these bacteria. The overall biomass and root/shoot ratio were also enhanced by bacterial inoculation. Hydroponic studies showed that the superoxide dismutase (SOD) activity and malondialdehyde (MDA) level, which had been increased in the presence of metal stress in rice roots, were lowered by the bacterial inoculation. In addition, all three strains were 1-aminocyclopropane-1-carboxylate (ACC) deaminase and catalase positive, whereas siderophore producing ability was lacking in PbSP6. However, both PbSP6 and AsSP9 were protease positive and could hydrolyse starch. The data indicate that these bacteria have promise for bioremediation as well as for plant growth promotion.  相似文献   

5.
Crude methanolic extracts of 37 marine organisms (16 species of flora, 21 species of fauna) were screened for antibacterial properties against 5 strains of bacteria isolated from marine environments. Of these, 10 plant and 9 animal extracts exhibited antibacterial activity against at least one bacterial strain. The extracts of 6 species were active against all the strains: i.e., Stoechospermum marginatum (brown algae), Cymodocea rotundata (seagrass), Petrosia sp. and Psammaplysilla purpurea (sponges), Sinularia compressa (soft coral), and Cassiopeia sp. (jellyfish). Among the plants, Padina tetrastromatica (brown algae) extract exhibited significant activity (9–11-mm inhibition zone at 500 μg per 6-mm disc) against Bacillus pumilus and Pseudomonas vesicularis, while the extracts of Petrosia, Psammaplysilla, and Cassiopeia were strongly active (11–13-mm inhibition zone at 500 μg per 6-mm disc) against B. circulans and P. putida. It was further confirmed that the attachment of bacterial strains on glass slides was inhibited remarkably with increasing concentrations of bioextracts of Petrosia sp. and Psammaplysilla purpurea. The present findings could form the basis for exploring the antibacterial potential of bioactive molecules from some of the marine organisms that exhibited moderate to strong antibacterial properties.  相似文献   

6.
【背景】杜比亚蟑螂(Blaptica dubia)可用于活体饲料、化妆品和医药保健品的生产,其肠道菌的研究对杜比亚蟑螂的饲养和肠道菌资源的开发与利用都十分重要。【目的】揭示杜比亚蟑螂肠道可培养菌的种类,筛选具有产消化酶功能的菌株,为理解肠道菌对宿主的影响机理及功能菌株的利用提供科学依据和研究材料。【方法】采用体外培养法获得杜比亚蟑螂肠道菌,结合形态学和分子生物学方法进行鉴定;用水解圈法分别筛选产纤维素酶、蛋白酶、脂肪酶和淀粉酶菌株。【结果】在杜比亚蟑螂肠道中共分离出4属7种细菌,其中芽孢杆菌属(Bacillus)2种,沙雷氏菌属(Serratia)和柠檬酸杆菌属(Citrobacter)各2种,肠球菌属(Enterococcus)1种。从获得的20个菌株中筛选出10个具有产消化酶功能的菌株。其中,芽孢杆菌属的菌株D6、D12和D20具有产纤维素酶、蛋白酶、淀粉酶及脂肪酶4种消化酶的功能;沙雷氏菌属的菌株D3、D7、D9、D11和D15具有产纤维素酶、蛋白酶和脂肪酶3种消化酶的能力;柠檬酸杆菌属的菌株D5具有产纤维素酶的功能;肠球菌属的菌株D17具有产蛋白酶的能力。【结论】杜比亚蟑螂肠道多种细菌具有产消化酶帮助降解大分子营养物质的功能,可通过协助食物消化影响宿主健康。菌株D12、D7和D11分别具有最强产纤维素酶、蛋白酶和脂肪酶的能力,是可进一步开发利用的肠道功能菌株资源。  相似文献   

7.
Abstract

Protease inhibitors significantly control physiologically relevant protease activities. Protease inhibitors from marine microbial sources are unique due to their rough living environmental conditions. In the present study, a protein protease inhibitor (PI) was produced from marine Oceanimonas sp. BPMS22. Seven different media were screened for the growth of the bacterium and production of PI. Different carbon and nitrogen sources were screened and optimized for the specific protease inhibitor activity. Three different growth models were checked for the best fit of the bacterial growth. A modified Gompertz model was selected as the best model for the growth of Oceanimonas sp. BPMS22 with the maximum specific growth rate of 0.165?hr?1 and doubling time of 4.2?hr. The production of PI takes place during the non-growing phase of the bacterial growth. A kinetic model for the production of PI during non-growing phase was used for studying various process parameters. From the model, the maximum trypsin inhibitor formation rate of 0.3802?IU per mg of biomass per hour was observed at 49.91?hr.  相似文献   

8.
Interactions with the bacterial community are increasingly considered to have a significant influence on marine phytoplankton populations. Here we used a simplified dinoflagellate‐bacterium experimental culture model to conclusively demonstrate that the toxic dinoflagellate Gymnodinium catenatum H. W. Graham requires growth‐stimulatory marine bacteria for postgermination survival and growth, from the point of resting cyst germination through to vegetative growth at bloom concentrations (103 cells · mL?1). Cysts of G. catenatum were germinated and grown in unibacterial coculture with antibiotic‐resistant or antibiotic‐sensitive Marinobacter sp. DG879 or Brachybacterium sp., and with mixtures of these two bacteria. Addition of antibiotics to cultures grown with antibiotic‐sensitive strains of bacteria resulted in death of the dinoflagellate culture, whereas cultures grown with antibiotic‐resistant bacteria survived antibiotic addition and continued to grow beyond the 21 d experiment. Removal of either bacterial type from mixed‐bacterial dinoflagellate cultures (using an antibiotic) resulted in cessation of dinoflagellate growth until bacterial concentration recovered to preaddition concentrations, suggesting that the bacterial growth factors are used for dinoflagellate growth or are labile. Examination of published reports of axenic dinoflagellate culture indicate that a requirement for bacteria is not universal among dinoflagellates, but rather that species may vary in their relative reliance on, and relationship with, the bacterial community. The experimental model approach described here solves a number of inherent and logical problems plaguing studies of algal‐bacterium interactions and provides a flexible and tractable tool that can be extended to examine bacterial interactions with other phytoplankton species.  相似文献   

9.
Marine waste is a highly renewable resource for the recovery of several value added metabolites with prospective industrial applications. This study describes the production of enzymes on marine waste and their subsequent use for the extraction of antioxidants from marine waste. Microbispora sp. and Bacillus sp. were grown on colloidal chitin and marine waste for the production of chitinase and protease. Microbispora sp. could produce 10.2 U ml−1 chitinase, whereas Bacillus sp. could produce 38 U ml−1 chitinase and 3.39 U ml−1 protease. The production of antioxidants was optimized using statistical designs and 6.6 units of 35 kDa chitinase from Microbispora sp., 16 units of 25 kDa chitinase from Bacillus sp., 2.3 units of protease, 1.5% marine waste and 36 h incubation gave maximum antioxidant activity. Nearly 5.0 mg of compound with antioxidant activity could be recovered per gram of marine waste. This compound was purified by HPLC and characterized by TLC, FT-IR and proton-NMR as N,N′-diacetylchitobiose. It exhibited 53% superoxide radical scavenging activity, 57% hydroxyl radical scavenging activity and 28% lipid peroxidation inhibition activity. Scale up of the extraction of antioxidant from marine waste and its pharmacological studies can extend its use in medicine.  相似文献   

10.
Bacteria associated with eight field-collected and five cultured soft corals of Briareum sp., Sinularia sp., Sarcophyton sp., Nephtheidae sp., and Lobophytum sp. were screened for their abilities in producing antimicrobial metabolites. Field-collected coral samples were collected from Nanwan Bay in southern Taiwan. Cultured corals were collected from the cultivating tank at National Museum of Marine Biology and Aquarium. A total of 1,526 and 1,138 culturable, heterotrophic bacteria were isolated from wild and cultured corals, respectively; seawater requirement and antimicrobial activity were then assessed. There is no significant difference between the ratio of seawater-requiring bacteria on the wild and cultured corals. The ratio of antibiotic-producing bacteria within the seawater-requiring bacteria did not differ between the corals. Nineteen bacterial strains that showed high antimicrobial activity were selected for 16S rDNA sequencing. Three strains could be assigned at the family level (Rhodobacteraceae). The remaining 16 strains belong to eight genera: Marinobacterium (2 strains), Pseudoalteromonas (1), Vibrio (5), Enterovibrio (1), Tateyamaria (1), Labrenzia (2), and Pseudovibrio (4). The crude extract from bacteria strains CGH2XX was found to have high cytotoxicity against the cancer cell line HL-60 (IC50?=?0.94???g/ml) and CCRF-CEM (IC50?=?1.19???g/ml). Our results demonstrate that the marine bacteria from corals have great potential in the discovery of useful medical molecules.  相似文献   

11.
Different Gram-positive and Gram-negative bacteria (Staphylococcus xylosus, S. aureus, S. cohnii, Bacillus sp., Corynebacterium sp., Pseudomonas vesicularis) were isolated from homogenized shoot tips of Drosera rotundifolia, Spatiphyllum sp., Syngonium cv. White butterfly, Nephrolepis exaltata cv. Teddy Junior. Growth inhibition of selected bacterial strains was examined using 28 different single antibiotics and 7 antibiotic mixtures. It was found that with the two mixtures Imipenem/Ampicillin and Imipenem/Penicillin G at concentrations of 5 mg l–1 each, bacterial growth inhibition was most effective. Because of the lack of toxic effects on in vitro plants of 7 species it was proposed that these antibiotic mixtures can be applied advantageously to inhibit bacterial growth in tissue culture.  相似文献   

12.
Metabolism of select amino acids in bacteria from the pig small intestine   总被引:3,自引:0,他引:3  
Dai ZL  Li XL  Xi PB  Zhang J  Wu G  Zhu WY 《Amino acids》2012,42(5):1597-1608
This study investigated the metabolism of select amino acids (AA) in bacterial strains (Streptococcus sp., Escherichia coli and Klebsiella sp.) and mixed bacterial cultures derived from the jejunum and ileum of pigs. Cells were incubated at 37°C for 3 h in anaerobic media containing 0.5–5 mM select AA plus [U-14C]-labeled tracers to determine their decarboxylation and incorporation into bacterial protein. Results showed that all types of bacteria rapidly utilized glutamine, lysine, arginine and threonine. However, rates of the utilization of AA by pure cultures of E. coli and Klebsiella sp. were greater than those for mixed bacterial cultures or Streptococcus sp. The oxidation of lysine, threonine and arginine accounted for 10% of their utilization in these pure bacterial cultures, but values were either higher or lower in mixed bacterial cultures depending on AA, bacterial species and the gut segment (e.g., 15% for lysine in jejunal and ileal mixed bacteria; 5.5 and 0.3% for threonine in jejunal mixed bacteria and ileal mixed bacteria, respectively; and 20% for arginine in ileal mixed bacteria). Percentages of AA used for bacterial protein synthesis were 50–70% for leucine, 25% for threonine, proline and methionine, 15% for lysine and arginine and 10% for glutamine. These results indicate diverse metabolism of AA in small-intestinal bacteria in a species- and gut compartment-dependent manner. This diversity may contribute to AA homeostasis in the gut. The findings have important implications for both animal and human nutrition, as well as their health and well-beings.  相似文献   

13.
14.
海洋动植物共附生微生物的分离和抗菌活性研究   总被引:1,自引:0,他引:1  
从海参、海胆、海葵、海兔、石莼、羊栖菜、裙带菜分离得到125种共附生海洋微生物,以6种敏感菌为指示菌,从中获得具有抑菌活性的细菌21株,放线菌8株,真菌2株。21株抑菌海洋细菌中芽孢杆菌属为7株,占33.3%,弧菌属为11种,占52.2%,其余3株为假单孢杆菌属,占14.5%。8株抑菌海洋放线菌中链霉菌属为5株,占62.5%,小单孢菌属为3株,占36.5%。2株抑菌海洋真菌均为青霉属。  相似文献   

15.
A bacteria strain Hg4-03 of Carnobacterium sp., isolated from the intestine of Hepialus gonggaensis larvae, was fed back to the fourth instars larvae as probiotics to evaluate its impact on the growth performance and digestive enzymes. The larvae were reared in the lab with a natural diet treated with different concentrations of bacterial fermentation and heating killed bacteria, respectively. Compared with the control group, results showed that the growth rates significantly increased and the insect mortality rate decreased significantly after feeding with live probiotics. Meanwhile, the activities of protease, total amylase and trehalase rose significantly in intestinal fluid of the group fed with live probiotics compared with the control treatment. These findings demonstrated that the intestinal bacteria Hg4-03 play an important role for the growth of H. gonggaensis larvae. The bacteria community can improve the growth of H. gonggaensis larvae, indicating that intestinal bacteria may probably be one of the most important factors impacting H. gonggaensis larvae reared in control conditions.  相似文献   

16.
Discovery of potential bioactive metabolites from sponge-associated bacteria have gained attraction in recent years. The current study explores the potential of sponge (Suberea mollis) associated bacteria against bacterial and fungal pathogens. Sponge samples were collected from Red sea in Obhur region, Jeddah, Saudi Arabia. Of 29 isolated bacteria belong to four different classes i.e. Firmicutes (62%), γ-Proteobacteria (21%), α-Proteobacteria (10%) and Actinobacteria (7%). Among them nineteen (65%) bacterial strains showed antagonistic activity against oomycetes and only 3 (10%) bacterial strains were active against human pathogenic bacteria tested. Most bioactive genera include Bacillus (55%), Pseudovibrio (13%) and Ruegeria (10%). Enzyme production (protease, lipase, amylase, cellualse) was identified in 12 (41%) bacterial strains where potential strains belonging to γ-Proteobacteria and Firmicutes groups. Production of antimicrobial metabolites and hydrolysates in these bacteria suggest their potential role in sponge against pathogens. Further bioactive metabolites from selected strain of Vibrio sp. EA348 were identified using LC-MS and GC–MS analyses. We identified many active metabolites including antibiotics such as Amifloxacin and fosfomycin. Plant growth hormones including Indoleacetic acid and Gibberellin A3 and volatile organic compound such as methyl jasmonate were also detected in this strain. Our results highlighted the importance of marine bacteria inhabiting sponges as potential source of antimicrobial compounds and plant growth hormones of pharmaceutical and agricultural significance.  相似文献   

17.
A total of 88 bacterial strains were isolated from six Andean lakes situated at altitudes ranging from 3,400 to 4,600 m above sea level: L. Aparejos (4,200 m), L. Negra (4,400 m), L. Verde (4,460 m), L. Azul (4,400 m), L. Vilama (4,600 m), and Salina Grande (3,400 m). Salinity ranged from 0.4 to 117 ppm. General diversity was determined by denaturing gradient gel electrophoresis (DGGE) analysis. From the excised DGGE bands, 182 bacterial sequences of good quality were obtained. Gammaproteobacteria and Cytophaga/Flavobacterium/Bacteroides (CFB) were the most abundant phylogenetic groups with 42% and 18% of identified bands, respectively. The isolated strains were identified by sequence analysis. Isolated bacteria were subjected to five different UV-B exposure times: 0.5, 3, 6, 12, and 24 h. Afterwards, growth of each isolate was monitored and resistance was classified according to the growth pattern. A wide interspecific variation among the 88 isolates was observed. Medium and highly resistant strains accounted for 43.2% and 28.4% of the isolates, respectively, and only 28.4% was sensitive. Resistance to solar radiation was equally distributed among the isolates from the different lakes regardless of the salinity of the lakes and pigmentation of isolates. Of the highly resistant isolates, 44.5% belonged to gammaproteobacteria, 33.3% to betaproteobacteria, 40% to alphaproteobacteria, 50% to CFB, and among gram-positive organisms, 33.3% were HGC and 44.5% were Firmicutes. Most resistant strains belonged to genera like Exiguobaceterium sp., Acinetobacter sp., Bacillus sp., Micrococcus sp., Pseudomonas sp., Sphyngomonas sp., Staphylococcus sp., and Stenotrophomonas sp. The current study provides further evidence that gammaproteobacteria are the most abundant and the most UV-B-resistant phylogenetic group in Andean lakes and that UV resistance in bacteria isolated from these environments do not depend on pigmentation and tolerance to salinity.  相似文献   

18.
Abstract If predators select for or against contaminant-degrading bacteria, it will affect bacterial survival and has important implications for bioremediation. Protozoa are important predators of bacteria. In order to determine whether protozoa preyed differentially on bacteria with different degradation abilities, two ciliates (Euplotes sp. and Cyclidium sp.) and three strains of PAH-degrading bacteria (Vibrio spp., degrading naphthalene, anthracene, or phenanthrene) were isolated from sediment from New York/New Jersey Harbor. By manipulating growth conditions, bacterial strains with different PAH-degradation abilities and different cell properties were produced. Stepwise regression models were used to analyze how clearance rates on suspended bacteria and grazing rates on bacteria attached to particles were affected by bacterial size, hydrophobicity, C:N ratio, protein content, and PAH-degradation ability. Clearance rates ranged from 0 to 49 nl ciliate−1 h−1 for Euplotes sp. and from 0 to 1.7 nl ciliate−1 h−1 for Cyclidium sp. Clearance rates of both ciliates were positively correlated with bacterial size, hydrophobicity, and protein content, and negatively correlated with C:N ratio. PAH degradation ability had no (for Euplotes sp.) or small (for Cyclidium sp.) effects on clearance rates. The models accounted for 63–75% of the variation in clearance rates on different bacteria. Only Euplotes sp. grazed on attached bacteria, at rates from 3 to 176 bacteria ciliate−1 h−1. A regression model with only C:N ratio and protein content explained 45% of the variation in grazing rates. These models indicate that multiple properties of bacteria affect their susceptibility to predation by ciliates, but PAH-degradation ability per se has little effect. Received: 5 May 1998; Accepted: 14 September 1998  相似文献   

19.
Summary Two highly alkalophilic bacteria, and potent producers of alkaline pullulanase, were isolated from Korean soils. The two isolates, identified asBacillus sp. S-1 andMicrococcus sp. Y-1, grow on starch under alkaline conditions and effectively secrete extracellular pullulanases. The two isolates were extremely alkalophilic since bacterial growth and enzyme production occurred at pH values ranging from pH 6.0 to 12.0 forMicrococcus sp. Y-1 and pH 6.0 to 10.0 forBacillus sp. S-1. Both strains secrete enzymes that possess amylolytic and pullulanolytic acitivities. Extracellular crude enzymes of both isolates gave maltotriose as the major product formed from soluble starch and pullulan hydrolysis. Compared to other alkalophilic microbes such asMicrococcus sp. (0.57 units ml–1),Bacillus sp. KSM-1876 (0.56 units ml–1) andBacillus No. 202-1 (1.89 units ml–1) these isolates secreted extremely high concentrations (7.0 units ml–1 forBacillus sp. S-1 and 7.6 units ml–1 forMicrococcus sp. Y-1) of pullulanases in batch culture. The pullulanase activities from both strains were mostly found in the culture medium (85–90%). The extracellular enzymes of both bacteria were alkalophilic and moderately thermoactive; optimal activity was detected at pH 8.0–10.0 and between 50 and 60°C. Even at pH 12.0, 65% of original Y-1 pullulanase activity and 10% of S-1 pullulanase activity remained. The two newly isolated strains had broad pH ranges and moderate thermostability for their enzyme activities. These result strongly indicate that these new bacterial isolates have potential as producers of pullulanases for use in the starch industry.  相似文献   

20.
Abstract

Thermophilic bacteria have attracted great attention due to their ability to produce thermostable enzymes. The aim of this study was the isolation and characterization of thermophilic bacteria from Gavmesh Goli hot spring in Sareyn, North West of Iran. Of 10 water samples collected, 36 thermophilic bacteria were obtained. The thermophilic bacteria were tested for their ability to produce hydrolase enzymes. All the isolates were potentially protease producers. Lipase, DNase, and amylase activities were confirmed in 34 (94.4%), 8 (22.2%), and 3 (8.3%) isolates, respectively. Five isolates with higher levels of enzyme activity were selected for further studies. Morphological, biochemical, and molecular analysis by 16S rRNA gene sequencing revealed that four isolates (DH15, DH16, DH20, and DH29) could be identified as Thermomonas hydrothermalis and one (PA10) Bacillus altitudinis. The protease produced by these isolates was optimally active at 50–55?°C, pH 8–8.5, and 0–0.5?M NaCl. In this first time study, we isolated T. hydrothermalis and B. altitudinis from Iranian hot springs and demonstrated the characteristics of T. hydrothermalis protease. Accordingly, due to the valuable potential of these bacteria such as the production of protease with high temperature and pH stability, these isolates can be introduced as promising candidates for industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号