首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The production of citric and gluconic acids from fig by Aspergillus niger ATCC 10577 in solid-state fermentation was investigated. The maximal citric and gluconic acids concentration (64 and 490 g/kg dry figs, respectively), citric acid yield (8%), and gluconic acid yield (63%) were obtained at a moisture level of 75%, initial pH 7.0, temperature 30°C, and fermentation time in 15 days. However, the highest biomass dry weight (40 g/kg wet substrate) and sugar utilization (90%) were obtained in cultures grown at 35°C. The addition of 6% (w/w) methanol into substrate increased the concentration of citric and gluconic acid from 64 and 490 to 96 and 685 g/kg dry fig, respectively. Journal of Industrial Microbiology & Biotechnology (2000) 25, 298–304. Received 15 April 2000/ Accepted in revised form 11 August 2000  相似文献   

2.
Continuous beer production was investigated in a high cell-density culture system which consisted of two stages for the fermentation and sedimentation of yeast cells. The continuous culture was carried out for a fermentation time of 5,500 h without contamination, at varying dilution rates and fermentation temperatures in the ranges of 0.017-0.033 h−1 and 6.5–8.5°C, respectively. This process was found to be suitable for continuous and stable beer brewing. Under these conditions, the cell concentration in the first stage was about 80 times as high as that in the exit of the second stage. Concentrations of viable cells, sugar and ethanol were maintained at 1.3 × 109 cells/ml, 25 and 36 g/l, respectively, and were hardly affected by fermentation temperature. Concentrations of ethyl acetate, isoamyl alcohol and isoamyl acetate were similar in the fermentation temperature ranges of 6.5–8.5°C, and the amounts at a fermentation temperature of 7°C were comparable to those of lager-type beer. Diacetyl flavor, which is known to be an effluent component that causes deterioration in the second stag e (young beer), was maintained at 1.2 ppm at a dilution rate and fermentation temperature of 0.022 h−1 and 7°C, respectively. The diacetyl flavor was due to the accumulation of vicinal diketone, the precursor of which is acetohydroxy acid. The acetohydroxy acid was converted to vicinal diketone by pretreatment at 60°C for 30 min. The vicinal diketone was then consumed by the yeast during after-fermentation at a fermentation temperature of 3°C. Using this method, total vicinal diketone decreased below 0.3 ppm for an after-fermentation time of 6.8 h, which was 225 times as fast as that of after-fermentation without the pretreatment. This process may make it possible to achieve continuous beer fermentation from the fermentation stage to after-fermentation for diacetyl removal.  相似文献   

3.
In the present work, the GHARS and the MECH DEGLA downgraded date varieties were used in a fermentation medium in order to produce citric acid by the Aspergillus niger. The biochemical characteristics of the dates were investigated, along with the chemical and physical characteristics of the solutions of both samples. The analyzed parameters included the moisture and sugar content, the ash residual, the pH values, and the electrical conductivity. The effect of the following fermentation parameters was studied: initial pH, temperature, incubation period, and methanol. For the GHARS and MECH DEGLA date varieties respectively, the ash residual measured at 1.90% and 2.47%. For each date variety, the moisture and total sugars were measured at 11.59% and 85%, for the GHARS, and 12.82% and 80.47% for the MECH DEGLA. Citric acid production using either of the two varieties of dates showed a high yield in a short time.The obtained results showed that the highest production of citric acid by both medium of dates was achieved at the initial pH value of 3.0, temperature 30 °C, and an incubation period of 8 days. Also, the maximum amount of citric acid was produced when both mediums contained 4% of methanol. Both varieties of dates showed a good yield for the citric acid and can be used as a culture medium since they are economic and ensure good growth for the Aspergillus niger.  相似文献   

4.
In this study, diluted and fortified carrot juice was used for modelling and optimization of citric acid production by a new mutant strain, Yarrowia lipolytica K-168. Protein concentrate obtained from fine flour -a byproduct of semolina production- was used as a nitrogen source in the fermentation medium. Interactive effects of selected independent variables, initial total sugar concentration, initial pH, initial concentration of protein concentrate obtained from fine flour of semolina and temperature, on the growth and citric acid production of the yeast were investigated. An experimental design including 30 experiments was conducted by using the method of central composite design. Modelling the effects of these independent variables on maximum citric acid concentration, maximum citric acid production rate, citric acid yield, the ratio of maximum citric acid concentration to maximum isocitric acid concentration and specific growth rate were performed by response surface methodology. The variations of all of the responses with the independent variables were defined by a quadratic model. Numeric optimization was performed by using the desireability function. The conditions with 190.83 g/L initial sugar concentration, 5.90 initial pH, 0.07 g/L initial concentration of fine flour protein concentrate and 27.86 °C were determined as optimal conditions for citric acid production. The maximum citric acid concentration reached to 80.53 g/L in optimal conditions.  相似文献   

5.
Using 22 males, 41 semen samples were collected from the vagina of mink by means of a plastic tubing attached to a 1 ml syringe. Subsamples of vaginal semen were diluted in 4 different extenders, viz., tris (tris, citric acid, glycine, fructose, glycerol and egg yolk), PVP (tris extender with polyvinyl pyrrolidone and caproic acid), milk (boiled and filtered milk with glycerol) and sodium citrate. The extended semen samples were stored at 23, 5 and −196°C for varying periods and evaluated for % motile spermatozoa. In the tris extender storage for 3 days at 5°C or for 2 days at 23°C reduced the number of spermatozoa by more than 50%. When milk was used as the extender, the motility decreased from an initial value of 68% to 10% after 5 days of 5°C and to 8% after 4 days at 23°C. The PVP extender was not suitable for storage at any temperature. After being frozen at −196°C for 2 hr, the motility ranged from 3–10% in the tris extender and was zero in milk and PVP extenders. Prolonged storage for 7 days in tris extender reduced the motility to 1–7%.  相似文献   

6.
Industrial vinegar production by submerged acetic acid fermentation has been carried out using Acetobacter strains at about 30°C. To obtain strains suitable for acetic acid fermentation at higher temperature, about 1,100 strains of acetic acid bacteria were isolated from vinegar mash, soils in vinegar factories and fruits, and their activities to oxidize ethanol at high temperature were examined. One of these strains, No. 1023, identified as Acetobacter aceti, retained full activity to produce acetic acid in continuous submerged culture at 35°C and produced 45% of activity at 38°C, while the usual strain of A. aceti completely lost its activity at 35°C. Thus the use of this strain may reduce the cooling costs of industrial vinegar production.  相似文献   

7.
Bacterial fermentation of lignocellulose has been regarded as a sustainable approach to butyric acid production. However, the yield of butyric acid is hindered by the conversion efficiency of hydrolysate xylose. A mesophilic alkaline-tolerant strain designated as Clostridium butyricum B10 was isolated by xylose fermentation with acetic and butyric acids as the principal liquid products. To enhance butyric acid production, performance of the strain in batch fermentation was evaluated with various temperatures (20–47 °C), initial pH (5.0–10.0), and xylose concentration (6–20 g/L). The results showed that the optimal temperature, initial pH, and xylose concentration for butyric acid production were 37 °C, 9.0, and 8.00 g/L, respectively. Under the optimal condition, the yield and specific yield of butyric acid reached about 2.58 g/L and 0.36 g/g xylose, respectively, with 75.00% butyric acid in the total volatile fatty acids. As renewable energy, hydrogen was also collected from the xylose fermentation with a yield of about 73.86 mmol/L. The kinetics of growth and product formation indicated that the maximal cell growth rate (μ m ) and the specific butyric acid yield were 0.1466 h?1 and 3.6274 g/g cell (dry weight), respectively. The better performance in xylose fermentation showed C. butyricum B10 a potential application in efficient butyric acid production from lignocellulose.  相似文献   

8.
In this study, citric acid production from extract of Jerusalem artichoke tubers by the genetically engineered yeast Yarrowia lipolytica strain 30 was investigated. After the compositions of the extract of Jerusalem artichoke tubers for citric acid production were optimized, the results showed that natural components of extract of Jerusalem artichoke tubers without addition of any other components were suitable for citric acid production by the yeast strain. During 10 L fermentation using the extract containing 84.3 g L?1 total sugars, 68.3 g L?1 citric acid was produced and the yield of citric acid was 0.91 g g?1 within 336 h. At the end of the fermentation, 9.2 g L?1 of residual total sugar and 2.1 g L?1 of reducing sugar were left in the fermented medium. At the same time, citric acid in the supernatant of the culture was purified. It was found that 67.2 % of the citric acid in the supernatant of the culture was recovered and purity of citric acid in the crystal was 96 %.  相似文献   

9.
The present study deals with submerged ethanol, citric acid, and α-amylase fermentation by Saccharomyces cerevisiae SDB, Aspergillus niger ANSS-B5, and Candida guilliermondii CGL-A10, using date wastes as the basal fermentation medium. The physical and chemical parameters influencing the production of these metabolites were optimized. As for the ethanol production, the optimum yield obtained was 136.00 ± 0.66 g/l under optimum conditions of an incubation period of 72 h, inoculum content of 4% (w/v), sugars concentration of 180.0 g/l, and ammonium phosphate concentration of 1.0 g/l. Concerning citric acid production, the cumulative effect of temperature (30°C), sugars concentration of 150.0 g/l, methanol concentration of 3.0%, initial pH of 3.5, ammonium nitrate concentration of 2.5 g/l, and potassium phosphate concentration of 2.5 g/l during the fermentation process of date wastes syrup did increase the citric acid production to 98.42 ± 1.41 g/l. For the production of α-amylase, the obtained result shows that the presence of starch strongly induces the production of α-amylase with a maximum at 5.0 g/l. Among the various nitrogen sources tested, urea at 5.0 g/l gave the maximum biomass and α-amylase estimated at 5.76 ± 0.56 g/l and 2,304.19 ± 31.08 μmol/l/min, respectively after 72 h incubation at 30°C, with an initial pH of 6.0 and potassium phosphate concentration of 6.0 g/l.  相似文献   

10.
A distinct subset of lactic acid bacteria that are greatly influenced by temperature play an important role during kimchi fermentation. However, microbial population dynamics and temperature control during kimjang kimchi fermentation, which is traditionally fermented underground, are not known. Here we show that Lactobacillus sakei predominates in kimjang kimchi, perhaps due to suitable fermentation (5∼9°C) and storage (−2°C) temperatures. The temperature of this kimchi gradually decreased to 3.2°C during the first 20 days of fermentation (−0.3°C/day) and then was stably maintained around 1.6°C, indicating that this simple approach is very efficient both for fermentation and storage. These findings provide important information towards the development of temperature controlling systems for kimchi fermentation.  相似文献   

11.
Phosphate‐solubilising ability and co‐production of plant growth promoting traits of stress tolerant Bacillus subtilis CB8A isolated from apple rhizosphere was tested under in vitro conditions against a wide range of temperature (30–45°C), pH (7–9) and salt (0–5%) stresses. Under the extremes of temperature (45°C), pH‐9 and salt concentration (5%), production of soluble phosphate, indole acetic acid, siderophore and antifungal activity against Dematophora necatrix were reduced by 71.09%, 75.29%, 90.3% and 88.47%, respectively. Per cent decrease in P‐solubilisation at extreme temperature (45°C) and normal pH (7) without salt concentration was 36.23%; at extreme pH (9) and normal temperature (37°C) without salt concentration was 23.45% and at extreme salt concentration (5%), optimum temperature (37°C) and pH (7) was 36.7%. P‐solubilisation by CB8A was inversely correlated with pH (r = ?0.78) and positively correlated with siderophore production (r = 0.81), indole acetic acid (r = 0.58) and antifungal activity (r = 0.63). Gluconic acid (1.43%) and citric acid (0.67%) were detected as major organic acids. P‐solubilisation and nitrogen fixing abilities of B. subtilis CB8A were confirmed by amplification of gdh and nifH genes. The ability of CB8A showing plant growth promoting rhizobacteria (PGPR) traits at a wide range of temperature, pH and varying salt concentration can be exploited for developing multifunctional biofertiliser in apple orchards.  相似文献   

12.
During the industrial stabilization process, lactic acid bacteria are subjected to several stressful conditions. Tolerance to dehydration differs among lactic acid bacteria and the determining factors remain largely unknown. Lactobacillus coryniformis Si3 prevents spoilage by mold due to production of acids and specific antifungal compounds. This strain could be added as a biopreservative in feed systems, e.g. silage. We studied the survival of Lb. coryniformis Si3 after freeze-drying in a 10% skim milk and 5% sucrose formulation following different fermentation pH values and temperatures. Initially, a response surface methodology was employed to optimize final cell density and growth rate. At optimal pH and temperature (pH 5.5 and 34 °C), the freeze-drying survival of Lb. coryniformis Si3 was 67% (±6%). The influence of temperature or pH stress in late logarithmic phase was dependent upon the nature of the stress applied. Heat stress (42 °C) did not influence freeze-drying survival, whereas mild cold- (26 °C), base- (pH 6.5), and acid- (pH 4.5) stress significantly reduced survival. Freeze-drying survival rates varied fourfold, with the lowest survival following mild cold stress (26 °C) prior to freeze-drying and the highest survival after optimal growth or after mild heat (42 °C) stress. Levels of different membrane fatty acids were analyzed to determine the adaptive response in this strain. Fatty acids changed with altered fermentation conditions and the degree of membrane lipid saturation decreased when the cells were subjected to stress. This study shows the importance of selecting appropriate fermentation conditions to maximize freeze-drying viability of Lb. coryniformis as well as the effects of various unfavorable conditions during growth on freeze-drying survival.  相似文献   

13.
In order to solve the problem of extraction wastewater pollution in citric acid industry, an integrated citric acid-methane fermentation process is proposed in this study. Extraction wastewater was treated by mesophilic anaerobic digestion and then used to make mash for the next batch of citric acid fermentation. The recycling process was done for seven batches. Citric acid production (82.4 g/L on average) decreased by 34.1?% in the recycling batches (2nd–7th) compared with the first batch. And the residual reducing sugar exceeded 40 g/L on average in the recycling batches. Pigment substances, acetic acid, ammonium, and metal ions in anaerobic digestion effluent (ADE) were considered to be the inhibitors, and their effects on the fermentation were studied. Results indicated that ammonium, Na+ and K+ in the ADE significantly inhibited citric acid fermentation. Therefore, the ADE was treated by acidic cation exchange resin prior to reuse to make mash for citric acid fermentation. The recycling process was performed for ten batches, and citric acid productions in the recycling batches were 126.6 g/L on average, increasing by 1.7 % compared with the first batch. This process could eliminate extraction wastewater discharge and reduce water resource consumption.  相似文献   

14.
This article examines the potential of lactose from whey permeate as a substrate for gibberellic acid production. In addition, the paper reports the derivation of mathematical models which simulate the various fermentation conditions to predict precise values. Of the five Fusarium moniliforme isolates screened for their ability to synthesize the gibberellic acid, F. moniliforme-1 proved to be the best strain (670 mg gibberellic acid/l) when fermentation was carried out at 28°C for 12 days. The product started to accumulate at the end of maximum growth phase (day 9) and continued until the curve reached a plateau (day 12). From the observed data and expected values, a temperature range of 27–30°C, pH range of 3.5–5.5 and an inoculum level of 10–12.5% (v/v) were considered optimal for attaining the highest product yield. However, nitrogen sources supplemented in whey permeate medium suppressed the ability of the culture under study to synthesize metabolite and utilize lactose.  相似文献   

15.
The influence of hyperthermia on cerebral blood flow, cerebral metabolic rate for oxygen and cerebral metabolite levels was studied by increasing body temperature from 37° to 40°C and 42°C in rats under nitrous oxide anaesthesia maintained at constant arterial CO2 tension. The metabolic rate for oxygen increased by 5-6% per degree centigrade. At 42°C the increase in cerebral blood Row was comparable to that in the metabolic rate. The increased temperatures were not accompanied by changes in organic phosphates (phosphocreatine, ATP, ADP or AMP) or in lactate/pyruvate ratio. There was an increase in the tissue to blood glucose concentration ratio. At steady state, there was an increase in glucose-6-phosphate but no other changes in glycolytic metabolites or citric acid cycle intermediates, and the only change in amino acids studied (glutamate, glutamine, aspartate, alanine and GABA) was an increase in glutamate concentration.  相似文献   

16.
Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6–1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13–28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L.  相似文献   

17.
Temperature-sensitive mutants were derived from Brevibacterium lactofermentum strain 2256 in a search for mutants which would produce a large amount of L-glutamic acid in biotin- rich media at the nonpermissive temperature. A total of 159 mutant strains was selected which showed adequate growth at 30°C but showed little or no growth at 37°C on minimal medium. Twenty of these were found to produce glutamic acid in a biotin-rich medium after a temperature shift from 30°C to 37°C, while the wild-type strain 2256 did not produce it under the same cultural condition.

One of the typical mutant strains, Ts-88, produced approximately 2g/dl of glutamic acid from beet molasses (the yield > 55%) in the presence of 33 µg/liter of biotin when tempera- , ture was shifted from 30°C to 40°C during the cultivation. It was concluded that, by controlling only temperature during fermentation, glutamic acid production could be realized in media containing biotin-rich natural carbon sources, without any chemical control such as the addition of expensive surface-active agents or antibiotics. Characteristics and merits of the novel fermentation process are discussed.  相似文献   

18.
A pilot plant for hydrothermal treatment of wheat straw was compared in reactor systems of two steps (first, 80°C; second, 190–205°C) and of three steps (first, 80°C; second, 170–180°C; third, 195°C). Fermentation (SSF) with Sacharomyces cerevisiae of the pretreated fibers and hydrolysate from the two-step system gave higher ethanol yield (64–75%) than that obtained from the three-step system (61–65%), due to higher enzymatic cellulose convertibility. At the optimal conditions (two steps, 195°C for 6 min), 69% of available C6-sugar could be fermented into ethanol with a high hemicellulose recovery (65%). The concentration of furfural obtained during the pretreatment process increased versus temperature from 50 mg/l at 190°C to 1,200 mg/l at 205°C as a result of xylose degradation. S. cerevisiae detoxified the hydrolysates by degradation of several toxic compounds such as 90–99% furfural and 80–100% phenolic aldehydes, which extended the lag phase to 5 h. Acetic acid concentration increased by 0.2–1 g/l during enzymatic hydrolysis and 0–3.4 g/l during fermentation due to hydrolysis of acetyl groups and minor xylose degradation. Formic acid concentration increased by 0.5–1.5 g/l probably due to degradation of furfural. Phenolic aldehydes were oxidized to the corresponding acids during fermentation reducing the inhibition level.  相似文献   

19.
A process for biological removal of iron from quartz sands, kaolins and clays was developed in which these industrial minerals were leached at 90°C with lixiviant produced as a result of the cultivation of acid-producing heterotrophic microorganisms, mainly strains of Aspergillus niger, at 30°C in a nutrient medium containing molasses as a source of carbon and energy. The lixiviant, i.e. the fermentation fluid, contained oxalic and citric acids as main components and after the cultivation was acidified to a pH of 0.5 by means of hydrochloric acid. The leaching was carried out in mechanically stirred acid-resistant vats for a period of from 1 to 5 hours. The iron content of some sands treated by this method was lowered from 0.035–0.088 to below 0.012% Fe2O3 making them suitable for the preparation of high quality glass. The iron content of different kaolins was lowered from 0.65–1.49 to 0.44–0.75% Fe2O3 and as a result of this their whiteness was increased from 55–87 to 86–92%. The iron content of a clay was lowered from 6.25 to 1.85% Fe2O3 and this increased the fireproofness of the clay from 1 670 to 1 750°C. Similar process was used for leaching of aluminium from aluminosilicates, mainly clays and kaolins. However, after the cultivation the fermentation fluid was acidified either by means of sulfuric or hydrochloric acid or by means of different mixtures of inorganic acids. For enhancing aluminium solubilization the aluminosilicates were heated before leaching at 600–650°C for 1–2 hours. Over 90% of the aluminium present in different clays and kaolins was leached within 3–6 hours in this way. “Silicate” bacteria related to the species Bacillus circulans and B. mucilaginosus were used to leach silicon from low-grade bauxite ores containing aluminosilicates as impurities. The bacterial action was connected with the formation of mucilaginous capsules consisting of expolysaccharides. The solid residues after leaching were characterized by higher values of alumina content and were suitable for processing by means of the BAYER process for recovering aluminium. Heterotrophic bacteria were used to leach manganese from oxide ores using different organic compounds as reducing agents.  相似文献   

20.
《Fungal biology》2022,126(8):471-479
The enzyme tannase is of great industrial and biotechnological importance for the hydrolysis of vegetable tannins, reducing their undesirable effects and generating products for a wide range of processes. Thus, the search for new microorganisms that permit more stable tannase production is of considerable importance. A strain of P. mangiferae isolated from cocoa leaves was selected and investigated for its capacity to produce tannase enzymes and gallic acid through submerged fermentation. The assessment of the variables affecting tannase production by P. mangiferae showed that tannic acid, ammonium nitrate and temperature were the most significant (8.4 U/mL). The variables were analyzed using Response Surface Methodology - RSM (Box-Behnken design), with the best conditions for tannase production being: 1.9% carbon source, 1% nitrogen source and temperature of 23 °C. Tannase activity doubled (16.9 U/mL) after the optimization process when compared to the initial fermentation. A pH of 7.0 was optimal for the tannase and it presented stability above 80% with pH between 4.0 and 7.0 after 2h of incubation. The optimal temperature was 30 °C and activity remained at above 80% at 40–60 °C after 1 h. Production of gallic acid was achieved with 1% tannic acid (0.9 mg/mL) and P. mangiferae had not used up the gallic acid produced by tannic acid hydrolysis after 144 h of fermentation. A 5% tannic acid concentration was the best for gallic acid production (1.6 mg/mL). These results demonstrate P. mangiferae’s potential for tannase and gallic acid production for biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号