首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is a bioactive lipid with activity in the nervous system mediated by G-protein-coupled receptors. Here, we examined the role of LPA signaling in the development of neuropathic pain by pharmacological and genetic approaches, including the use of mice lacking the LPA(1) receptor. Wild-type animals with nerve injury develop behavioral allodynia and hyperalgesia paralleled by demyelination in the dorsal root and increased expression of both the protein kinase C gamma-isoform within the spinal cord dorsal horn and the alpha(2)delta(1) calcium channel subunit in dorsal root ganglia. Intrathecal injection of LPA induced behavioral, morphological and biochemical changes similar to those observed after nerve ligation. In contrast, mice lacking a single LPA receptor (LPA(1), also known as EDG2) that activates the Rho-Rho kinase pathway do not develop signs of neuropathic pain after peripheral nerve injury. Inhibitors of Rho and Rho kinase also prevented these signs of neuropathic pain. These results imply that receptor-mediated LPA signaling is crucial in the initiation of neuropathic pain.  相似文献   

2.

Background

In our present study, we studied the role of demyelination of the trigeminal nerve root in the development of prolonged nociceptive behavior in the trigeminal territory.

Results

Under anesthesia, the Sprague-Dawley rats were mounted onto a stereotaxic frame and 3 ??L of lysophosphatidic acid (LPA, 1 nmol) was injected into the trigeminal nerve root to produce demyelination. This treatment decreased the air-puff thresholds, persisted until postoperative day 130, and then returned to the preoperative levels 160 days after LPA injection. The LPA-treated rats also showed a significant hyper-responsiveness to pin-prick stimulation. We further investigated the antinociceptive and neuroprotective effects of progesterone in rats undergoing demyelination of the trigeminal nerve root. Progesterone (8, 16 mg/kg/day) was administered subcutaneously, beginning on the operative day, for five consecutive days in the LPA-treated rats. Treatment with progesterone produced significant early anti-allodynic effects and delayed prolonged anti-allodynic effects. The expression of protein zero (P0) and peripheral myelin protein 22 (PMP22) were significantly down-regulated in the trigeminal nerve root on postoperative day 5 following LPA injection. This down-regulation of the P0 and PMP22 levels was blocked by progesterone treatment.

Conclusions

These results suggest that progesterone produces antinociceptive effects through neuroprotective action in animals with LPA-induced trigeminal neuropathic pain. Moreover, progesterone has potential utility as a novel therapy for trigeminal neuropathic pain relief at an appropriate managed dose and is therefore a possible future treatment strategy for improving the recovery from injury.  相似文献   

3.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   

4.
The Prx gene in Schwann cells encodes L- and S-periaxin, two abundant PDZ domain proteins thought to have a role in the stabilization of myelin in the peripheral nervous system (PNS). Mice lacking a functional Prx gene assemble compact PNS myelin. However, the sheath is unstable, leading to demyelination and reflex behaviors that are associated with the painful conditions caused by peripheral nerve damage. Older Prx-/- animals display extensive peripheral demyelination and a severe clinical phenotype with mechanical allodynia and thermal hyperalgesia, which can be reversed by intrathecal administration of a selective NMDA receptor antagonist We conclude that the periaxins play an essential role in stabilizing the Schwann cell-axon unit and that the periaxin-deficient mouse will be an important model for studying neuropathic pain in late onset demyelinating disease.  相似文献   

5.
6.
Recent advances in pain research provide a clear picture for the molecular mechanisms of acute pain; substantial information concerning plasticity that occurs during neuropathic pain has also become available. The peripheral mechanisms responsible for neuropathic pain are found in the altered gene/protein expression of primary sensory neurons. With damage to peripheral sensory fibers, a variety of changes in pain-related gene expression take place in dorsal root ganglion neurons. These changes, or plasticity, might underlie unique neuropathic pain-specific phenotype modifications – decreased unmyelinated-fiber functions, but increased myelinated A-fiber functions. Another characteristic change is observed in allodynia, the functional change of tactile to nociceptive perception. Throughout a series of studies, using novel nociceptive tests to characterize sensory-fiber or pain modality-specific nociceptive behaviors, it was demonstrated that communication between innocuous and noxious sensory fibers might play a role in allodynia mechanisms. Because neuropathic pain in peripheral and central demyelinating diseases develops as a result of aberrant myelination in experimental animals, demyelination seems to be a key mechanism of plasticity in neuropathic pain. More recently, we discovered that lysophosphatidic acid receptor activation initiates neuropathic pain, as well as possible peripheral mechanims of demyelination after nerve injury. These results lead to further hypotheses of physical communication between innocuous Aβ- and noxious C- or Aδ-fibers to influence the molecular mechanisms of allodynia.  相似文献   

7.
Lysophosphatidic acid (LPA; 1-acyl-sn-glycerol-3-phosphate), an abundant constituent of serum, mediates multiple biological responses via G protein-coupled serpentine receptors. Schwann cells express the LPA receptors (Edg receptors), which, once activated, have the potential to signal through G(alphai) to activate p21(ras) and phosphatidylinositol 3-kinase, through G(alphaq) to activate phospholipase C, or through G(q12/13) to activate the Rho pathway. We found that the addition of serum or LPA to serum-starved Schwann cells rapidly (10 min) induced the appearance of actin stress fibers via a Rho-mediated pathway. Furthermore, LPA was able to rescue Schwann cells from apoptosis in a G(alphai)/phosphatidylinositol 3-kinase/MEK/MAPK-dependent manner. In addition, LPA increased the expression of myelin protein P(0) in Schwann cells in a Galpha(i)-independent manner but dependent on protein kinase C. By means of pharmacological and overexpression approaches, we found that the novel isozyme protein kinase Cdelta was required for myelin P(0) expression. Thus, the multiple effects of LPA in Schwann cells (actin reorganization, survival, and myelin gene expression) appear to be mediated through the different G protein-dependent pathways activated by the LPA receptor.  相似文献   

8.
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.  相似文献   

9.
Lysophosphatidic acid (LPA) signaling, through LPA1 receptor and its downstream RhoA, has been reported to initiate nerve injury-induced neuropathic pain. In the present study, we performed gene expression profiling of the dorsal root ganglion (DRG) to identify genes induced by intrathecal injection of LPA in a botulinum toxin C3 (BoNT/C3)-reversible manner. We selected and functionally characterized ephrinB1 from 82 identified genes as a potential gene involved in pain transmission, since ephrinB1 is implicated to modulate N-methyl-d-aspartate (NMDA) receptor functions in spinal pain transmission. The LPA-induced and BoNT/C3-reversible ephrinB1 gene expression was confirmed by quantitative real-time PCR. Furthermore, treatments with an antisense oligodeoxynucleotide for ephrinB1 largely abolished the LPA-induced thermal hyperalgesia and allodynia in response to mechanical or Aβ-fiber-mediated electrical stimuli on day 1 after the injection. In addition, intrathecal treatment with a soluble ligand, ephrinB1-Fc, caused similar neuropathic pain-like behaviors in a manner that was reversible by the NMDA receptor antagonist MK-801. These results suggest that ephrinB1 plays a crucial role in LPA-induced neuropathic pain. In addition, the present study may provide a new strategy to identify unique neuropathic pain-related genes.  相似文献   

10.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator that exerts a wide range of biological actions. In recent decades, LPA has been demonstrated as an important initiator of neuropathic pain based on the mechanisms of LPA-induced feed-forward LPA amplification. In this study, we examined the possible involvement of interleukin (IL)-1β in such LPA production. Intrathecal (i.t.) LPA injection rapidly increased the expression of IL-1β mRNA in the spinal dorsal horn as early as 0.5 h after injection, and the level reached peak at 2 h. Through a developed quantitative mass spectrometry for detecting LPA species, the elevated levels of 18:1, 16:0, and 18:0 LPA in the spinal dorsal horn were observed at 3 h after 18:1 LPA injection and this elevation was completely blocked by the pretreatment of IL-1β-neutralizing antibody. Moreover, enzyme assay experiments showed that LPA (i.t.) significantly activated calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in the spinal dorsal horn at 1 and 2 h, respectively, and these biochemical changes were also significantly inhibited by IL-1β-neutralizing antibody. Similarly, IL-1β-neutralizing antibody reversed LPA-induced neuropathic pain-like behavior. These findings suggest that the early release of IL-1β is involved in LPA-induced amplification of LPA production, which underlies the initial mechanisms of LPA-induced neuropathic pain.  相似文献   

11.
Prolonged type 2 diabetes mellitus (T2DM) produces a common complication, peripheral neuropathy, which is accompanied by nerve fiber disorder, axon atrophy, and demyelination. Growing evidence has characterized the beneficial effects of acidic fibroblast growth factor (aFGF) and shown that it relieves hyperglycemia, increases insulin sensitivity, and ameliorates neuropathic impairment. However, there is scarce evidence on the role of aFGF on remodeling of aberrant myelin under hyperglycemia condition. Presently, we observed that the expression of aFGF was rapidly decreased in a db/db T2DM mouse model. Administration of exogenous aFGF was sufficient to block acute demyelination and nerve fiber disorganization. Furthermore, this strong anti-demyelinating effect was most likely dominated by an aFGF-mediated increase of Schwann cell (SC) proliferation and migration as well as suppression of its apoptosis. Mechanistically, the beneficial biological effects of aFGF on SC behavior and abnormal myelin morphology were likely due to the inhibition of hyperglycemia-induced oxidative stress activation, which was most likely activated by kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid-derived-like 2 (Nrf2) signaling. Thus, this evidence indicates that aFGF is a promising protective agent for relieving myelin pathology through countering oxidative stress signaling cascades under diabetic conditions.Subject terms: Growth factor signalling, Molecular neuroscience  相似文献   

12.
Mutations in the frataxin gene cause dorsal root ganglion demyelination and neurodegeneration, which leads to Friedreich's ataxia. However the consequences of frataxin depletion have not been measured in dorsal root ganglia or Schwann cells. We knocked down frataxin in several neural cell lines, including two dorsal root ganglia neural lines, 2 neuronal lines, a human oligodendroglial line (HOG) and multiple Schwann cell lines and measured cell death and proliferation. Only Schwann cells demonstrated a significant decrease in viability. In addition to the death of Schwann cells, frataxin decreased proliferation in Schwann, oligodendroglia, and slightly in one neural cell line. Thus the most severe effects of frataxin deficiency were on Schwann cells, which enwrap dorsal root ganglia neurons. Microarray of frataxin-deficient Schwann cells demonstrated strong activations of inflammatory and cell death genes including interleukin-6 and Tumor Necrosis Factor which were confirmed at the mRNA and protein levels. Frataxin knockdown in Schwann cells also specifically induced inflammatory arachidonate metabolites. Anti-inflammatory and anti-apoptotic drugs significantly rescued frataxin-dependent Schwann cell toxicity. Thus, frataxin deficiency triggers inflammatory changes and death of Schwann cells that is inhibitable by inflammatory and anti-apoptotic drugs.  相似文献   

13.
Src-suppressed protein kinase C substrate (SSeCKS) plays an important role in the differentiation process. In regeneration of sciatic nerve injury, expression of SSeCKS decreases, mainly in Schwann cells. However, the function of SSeCKS in Schwann cells differentiation remains unclear. We observed that SSeCKS was decreased in differentiated Schwann cells. In long-term SSeCKS-reduced Schwann cells, cell morphology changed and myelin gene expression induced by cAMP was accelerated. Myelination was also enhanced in SSeCKS-suppressed Schwann cells co-culture with dorsal root ganglion (DRG). In addition, we found suppression of SSeCKS expression promoted Akt serine 473 phosphorylation in cAMP-treated Schwann cells. In summary, our data indicated that SSeCKS was a negative regulator of myelinating glia differentiation.  相似文献   

14.
Neuropathic pain is the most common chronic pain that is caused by nerve injury or disease that influences the nervous system. Increasing evidence suggested that microRNAs (miRNAs) play a crucial role in neuropathic pain and neuroinflammation development. However, the functional role of miR-217 in the development of neuropathic pain remains unknown. In this study, we used rats to establish a neuropathic pain model and showed that the miR-217 expression level was upregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI). However, the expression of miR-217 was not changed in the anterior cingulated cortex (ACC), hippocampus, and dorsal root ganglion (DRG) of bCCI rats. Ectopic expression of miR-217 attenuated neuropathic pain and suppressed neuroinflammation expression in vivo. We identified toll-like receptor 5 (TLR5) as a direct target gene of miR-217 in the PC12 cell. In addition, we demonstrated that the expression level of TLR5 was upregulated in bCCI rats. Moreover, restoration of TLR5 rescued the inhibitory roles induced by miR-217 overexpression on neuropathic pain and neuroinflammation development. These data suggested that miR-217 played a pivotal role in the development of neuropathic pain partly through regulating TLR5 expression.  相似文献   

15.
Demyelinating peripheral neuropathies associated with abnormal expression of peripheral myelin protein 22 (PMP22) involve the formation of cytosolic protein aggregates within Schwann cells. Towards developing a therapy for these progressive neurodegenerative diseases, we assessed whether pharmacological activation of autophagy by rapamycin (RM) could prevent protein aggregation and enhance Schwann cell myelination. Indeed, we found that glial cells from neuropathic mice activate autophagy in response to RM and produce abundant myelin internodes. Lentivirus-mediated shRNA shutdown of Atg12 abrogates the improvements in myelin production, demonstrating that autophagy is critical for the observed benefits.  相似文献   

16.
S Haggiag  J Chebath  M Revel 《FEBS letters》1999,457(2):200-204
Expression of myelin basic protein (MBP) and Po gene products is induced during the final postnatal maturation of Schwann cells and reinduced during nerve regeneration. We show that a chimeric protein containing interleukin-6 fused to its soluble receptor (IL6RIL6 chimera) induces MBP and Po RNAs and proteins in cultures of dorsal root ganglia (DRG) from 14 day old mouse embryos. Activation of gp130 signaling by IL6RIL6 appears comparable to cyclic AMP elevating agents to induce the myelin gene products in DRG and in pure Schwann cell cultures.  相似文献   

17.
Dichloroacetate (DCA) is an investigational drug for genetic mitochondrial diseases whose use has been mitigated by reversible peripheral neuropathy. We investigated the mechanism of DCA neurotoxicity using cultured rat Schwann cells (SCs) and dorsal root ganglia (DRG) neurons. Myelinating SC-DRG neuron co-cultures, isolated SCs and DRG neurons were exposed to 1-20 mm DCA for up to 12 days. In myelinating co-cultures, DCA caused a dose- and exposure-dependent decrease of myelination, as determined by immunolabeling and immunoblotting for myelin basic protein (MBP), protein zero (P0), myelin-associated glycoprotein (MAG) and peripheral myelin protein 22 (PMP22). Partial recovery of myelination occurred following a 10-day washout of DCA. DCA did not affect the steady-state levels of intermediate filament proteins, but promoted the formation of anti-neurofilament antibody reactive whirls. In isolated SC cultures, DCA decreased the expression of P0 and PMP22, while it increased the levels of p75(NTR) (neurotrophin receptor), as compared with non-DCA-treated samples. DCA had modest adverse effects on neuronal and glial cell vitality, as determined by the release of lactate dehydrogenase. These results demonstrate that DCA induces a reversible inhibition of myelin-related proteins that may account, at least in part, for its clinical peripheral neuropathic effects.  相似文献   

18.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   

19.

Background

Although pregabalin therapy is beneficial for neuropathic pain (NeP) by targeting the CaV??2??-1 subunit, its site of action is uncertain. Direct targeting of the central nervous system may be beneficial for the avoidance of systemic side effects.

Results

We used intranasal, intrathecal, and near-nerve chamber forms of delivery of varying concentrations of pregabalin or saline delivered over 14 days in rat models of experimental diabetic peripheral neuropathy and spinal nerve ligation. As well, radiolabelled pregabalin was administered to determine localization with different deliveries. We evaluated tactile allodynia and thermal hyperalgesia at multiple time points, and then analyzed harvested nervous system tissues for molecular and immunohistochemical changes in CaV??2??-1 protein expression. Both intrathecal and intranasal pregabalin administration at high concentrations relieved NeP behaviors, while near-nerve pregabalin delivery had no effect. NeP was associated with upregulation of CACNA2D1 mRNA and CaV??2??-1 protein within peripheral nerve, dorsal root ganglia (DRG), and dorsal spinal cord, but not brain. Pregabalin's effect was limited to suppression of CaV??2??-1 protein (but not CACNA2D1 mRNA) expression at the spinal dorsal horn in neuropathic pain states. Dorsal root ligation prevented CaV??2??-1 protein trafficking anterograde from the dorsal root ganglia to the dorsal horn after neuropathic pain initiation.

Conclusions

Either intranasal or intrathecal pregabalin relieves neuropathic pain behaviours, perhaps due to pregabalin's effect upon anterograde CaV??2??-1 protein trafficking from the DRG to the dorsal horn. Intranasal delivery of agents such as pregabalin may be an attractive alternative to systemic therapy for management of neuropathic pain states.  相似文献   

20.
Neuropathic pain is a somatosensory disorder which is caused by disease or nerve injury that affects the nervous system. microRNAs (miRNAs) are proved to play crucial roles in the development of neuropathic pain. However, the role of miR-202 in neuropathic pain is still unknown. Sprague-Dawley rats were used for constructing the neuropathic pain model. The expression of miR-202 was determined by quantitative real-time polymerase chain reaction. Potential target gene for miR-202 was measured using bioinformatics methods and Western blot analysis. In this study, we used rats to establish a neuropathic pain model and measured the effect of miR-202 in neuropathic pain. We demonstrated that miR-202 expression was downregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI) rat. However, miR-202 expression was not changed in the dorsal root ganglion, hippocampus, and anterior cingulated cortex of bCCI rat. We identified that RAP1A was a direct target gene of miR-202 in the PC12 cell. RAP1A expression was upregulated in the spinal dorsal horn of bCCI rat. Overexpression of miR-202 could improve the pain threshold for bCCI rats in both hindpaws, indicating that miR-202 overexpression could lighten the pain threshold for model rats. Moreover, RAP1A overexpression increased the pain threshold effect of miR-202 overexpression treated bCCI rats, indicating that miR-202 could lighten the pain threshold through inhibiting RAP1A expression. These data suggested that miR-202 acted pivotal roles in the development of neuropathic pain partly through targeting RAP1A gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号