共查询到20条相似文献,搜索用时 0 毫秒
1.
Vibrational circular dichroism (VCD) has become a standard method for determination of absolute stereochemistry, particularly now that reliable commercial instrumentation has become available. These instruments use a now well‐documented Fourier transform infrared‐based approach to measure VCD that has virtually displaced initial dispersive infrared‐based designs. Nonetheless, many papers have appeared reporting dispersive VCD data, especially for biopolymers. Instrumentation designed with these original methods, particularly after more recent updates optimizing performance in selected spectral regions, has been shown still to have advantages for specific applications. This article presents a mini‐review of dispersive VCD instrument designs and includes sample spectra obtained for various biopolymer (particularly peptide) samples. Complementary reviews of Fourier transform‐VCD designs are broadly available. 相似文献
2.
The tertiary structure of the alpha-subunit of tryptophan synthase was proposed using a combination of experimental data and computational methods. The vacuum-ultraviolet circular dichroism spectrum was used to assign the protein to the alpha/beta-class of supersecondary structures. The two-domain structure of the alpha-subunit (Miles et al.: Biochemistry 21:2586, 1982; Beasty and Matthews: Biochemistry 24:3547, 1985) eliminated consideration of a barrel structure and focused attention on a beta-sheet structure. An algorithm (Cohen et al.: Biochemistry 22:4894, 1983) was used to generate a secondary structure prediction that was consistent with the sequence data of the alpha-subunit from five species. Three potential secondary structures were then packed into tertiary structures using other algorithms. The assumption of nearest neighbors from second-site revertant data eliminated 97% of the possible tertiary structures; consideration of conserved hydrophobic packing regions on the beta-sheet eliminated all but one structure. The native structure is predicted to have a parallel beta-sheet flanked on both sides by alpha-helices, and is consistent with the available data on chemical cross-linking, chemical modification, and limited proteolysis. In addition, an active site region containing appropriate residues could be identified as well as an interface for beta 2-subunit association. The ability of experimental data to facilitate the prediction of protein structure is discussed. 相似文献
3.
4.
α1-Acid glycoprotein (AGP) interacts with lipid membranes as a peripheral membrane protein so as to decrease the drug-binding capacity accompanying the β→α conformational change that is considered a protein-mediated uptake mechanism for releasing drugs into membranes or cells. This study characterized the mechanism of interaction between AGP and lipid membranes by measuring the vacuum-ultraviolet circular-dichroism (VUVCD) spectra of AGP down to 170 nm using synchrotron radiation in the presence of five types of liposomes whose constituent phospholipid molecules have different molecular characteristics in the head groups (e.g., different net charges). The VUVCD analysis showed that the α-helix and β-strand contents and the numbers of segments of AGP varied with the constituent phospholipid molecules of liposomes, while combining VUVCD data with a neural-network method predicted that these membrane-bound conformations comprised several common long helix and small strand segments. The amino-acid composition of each helical segment of the conformations indicated that amphiphilic and positively charged helices formed at the N- and C-terminal regions of AGP, respectively, were candidate sites for the membrane interaction. The addition of 1 M sodium chloride shortened the C-terminal helix while having no effect on the length of the N-terminal one. These results suggest that the N- and C-terminal helices can interact with the membrane via hydrophobic and electrostatic interactions, respectively, demonstrating that the liposome-dependent conformations of AGP analyzed using VUVCD spectroscopy provide useful information for characterizing the mechanism of interaction between AGP and lipid membranes. 相似文献
5.
Advances in the measurement, calculation, and application of vibrational circular dichroism (VCD) for the determination of absolute configuration are described. The purpose of the review is to provide an up-to-date perspective on the capability of VCD to solve problems of absolute stereochemistry for chiral molecules primarily in the solution state. The scope of the article covers the experimental methods needed for the accurate measurement of VCD spectra and the theoretical steps required to systematically deduce absolute configuration. Determination of absolute configuration of a molecule by VCD requires knowledge of its conformation or conformational distribution, and hence VCD analysis necessarily provides solution-state conformation information, in many cases available by no other method, as an additional benefit. Comparisons of the advantages and limitations of VCD relative to other available chiroptical methods of analysis are also presented. 相似文献
6.
Michael Goetz Serge Geoffre Bernard Busetta Claude Manigand Claude Nespoulous Danile Londos-Gagliardi Bernard Guillemain Michel Hospital 《Journal of peptide science》1997,3(5):347-353
Essential HTLV-I biological functions, like host-cell receptor recognition, depend on the structural motives on the surface glycoprotein gp46. We defined a peptide of 88 amino acids [Arg147-Leu234] corresponding to the central part of the protein sequence, where major neutralizing epitopes are localized. After evaluating the feasibility of its chemical synthesis, the chosen sequence was realized using the stepwise solid-phase methodology. Multiple chromatographic purification steps were required to obtain a sample suitable for structural analysis. Correct folding was supported by strong binding of monooclonal antibodies, recognizing known exposed immunodominant regions. Circular dichroism studies confirmed a non-random conformation of at least 70–80% of the synthetic peptide. Investigation of the 3D-structure of the synthetic peptide will provide useful information for future vaccine and drug-design strategies. © 1997 European Peptide Society and John Wiley & Sons, Ltd. J. Pep. Sci.3: 347–353 No. of Figures: 5. No. of Tables: 0. No. of References: 23 相似文献
7.
In order to determine the effect of chemical modification of the -amino groups on the secondary structure of ovalbumin, we prepared six acetylated (17, 36, 54, 70, 82, and 98%) and four succinylated derivatives (25, 50, 72, and 97%) of the protein. Native ovalbumin and the acylated derivatives were homogeneous as revealed by the electrophoretic pattern. The UV-absorption and fluorescence spectra changed progressively with the extent of modification. However, circular dichroic (CD) studies indicated that acylation of 15 of the 20 lysine residues had little effect on the secondary structure of ovalbumin. Acylation of the remaining five lysine residues resulted in a fairly severe change in the secondary structure. The -helical content decreased from about 31% in the native state to 16.5% in the 97% succinylated ovalbumin and to 21.5% in the 98% acetylated derivative. A comparison of these data with the spectral and hydrodynamic data of Qasim and Salahuddin (1978) suggested that the secondary structure of ovalbumin is more resistant to acylation than is the tertiary structure and, thus, the tertiary and the secondary structures are, to some extent, mutually independent. Raising thepH to 11.2 did not alter the secondary structure of ovalbumin and increasing the ionic strength by more than 20-fold did not reverse the loss of helical structure in 97% succinylated protein. These two observations suggest that the change in secondary structure upon maximal acylation may not only involve electrostatic effects, but also certain other factors, such as steric hindrance due to the entering bulky groups. 相似文献
8.
Vladislav Victorovich Khrustalev Tatyana Aleksandrovna Khrustaleva Kamil Szpotkowski Victor Vitoldovich Poboinev Katsiaryna Yurieuna Kakhanouskaya 《Proteins》2016,84(10):1462-1479
Mechanisms of beta sheet formation by the human prion protein are not clear yet. In this work, we clarified the role of the region containing C‐half of the second helix and N‐half of the third helix of that protein in the process of alpha helix to beta sheet transition. Solid phase automatic synthesis of the original peptide (CC36: Cys179–Cys214) failed because of the beta hairpin formation in the region 206‐MERVVEQMC‐214 with a high beta strand potential. Using Met206Arg and Val210Arg substitutions, we increased the probability of alpha helix formation by that sequence. After that modification, the complete CC36 peptide with disulfide bond has been synthesized. Modified peptide has been studied by circular dichroism (CD) and fluorescence spectrography. According to the CD spectra analysis, the CC36 peptide contains 37% of residues in beta sheet and just 15% in helix. Thermal analysis under the control of CD shows that the secondary structure content of the peptide is stable from 5°C to 80°C. Dissociation of oligomers of the CC36 peptide finishes at 37°C according to the fluorescence analysis. The CC36 peptide is able to bind Mn2+ cations, which causes small temperature‐associated structural shifts at concentrations of 2 – 10·10?6 M. Predicted beta hairpin of the CC36 peptide (two beta strands are: 184‐IKQHTVT‐190 and 197‐TETDVKM‐205) should be the part of a longer beta hairpin from the scrapie form of the prion protein (PrPSc). Analogs of the CC36 peptide may be considered as antigens for the future development of a vaccine against PrPSc. Proteins 2016; 84:1462–1479. © 2016 Wiley Periodicals, Inc. 相似文献
9.
The cytolytic activities and conformational properties of pardaxin (GFFALIPKIISSPLFKTLLSAVGSALSSSGEQE), a 33-residue linear peptide that exhibits unusual shark repellent and cytolytic activities, and its analogues have been examined in aqueous environment and trifluoroethanol (TFE) using CD spectroscopy. A peptide corresponding to the 1–26 segment and an analogue where P7 has been changed to A show greater hemolytic activity than pardaxin. While the peptide corresponding to the N-terminal 18-residue segment does not exhibit hemolytic activity, its analogue where P7 is replaced by A is hemolytic. The secondary structural propensities of the peptides were inferred by deconvolution of the experimental spectra into pure components. Pardaxin, its variant where proline at position 7 was replaced by alanine, and shorter peptides corresponding to N-terminal segments exist in multiple conformations in aqueous medium that are comprised of β-turn, β-sheet, and distorted helical structures. With increasing proportions of TFE, while helical conformation predominates in all the peptides, both distorted and the regular α-helices appear to be populated. Analysis of CD spectra by deconvolution methods appears to be a powerful tool for delineating multiple conformations in peptides, especially membrane-active peptides that encounter media of different polarity ranging from aqueous environment to one of low dielectric constant in the hydrophobic interior of membranes. Our study provides further insights into the structural requirements for the biological activity of pardaxin and related peptides. © 1997 John Wiley & Sons, Inc. Biopoly 41: 635–645, 1997 相似文献
10.
S. R. Nussbaum N. V. Beaudette G. D. Fasman J. T. Potts Jr. M. Rosenblatt 《Journal of Protein Chemistry》1985,4(6):391-406
An approach to the design of peptide-hormone analogues in which amino acid substitutions are based on predicted effects on secondary structure was investigated. The structural requirements for parathyroid-hormone (PTH) action are distinct from the determinants necessary for receptor binding alone without subsequent activation of adenylate cyclase. Two analogues of PTH containing substitutions in the principal binding domain of PTH, the region 25–34, were synthesized by the solid-phase method and evaluated for bioactivity. The sequence 25–34 was predicted to have nearly equal conformational potential for both -helix and -sheet using Chou and Fasman parameters. A previously studied analogue, [Tyr34]bPTH(1–34) amide, containing substitutions in this region, was more active than was bPTH-(1–34). The substitution of tyrosine for phenylalanine at position 34 in this analogue is predicted to promote -sheet conformation. The analogues [Ile28, Tyr30, Tyr34]bPTH-(1–34) amide and [Arg32, Tyr34]bPTH-(1–34) amide each contain substitutions predicted to further enhance or stabilize -sheet formation. The solution conformation of these analogues, determined by circular dichroism studies in an aqueous buffer and an organic solvent, indicated promotion of -sheet secondary structural content in both analogues in a hydrophobic environment chosen to simulate that of the interaction of the peptide and the membrane receptor. In contrast, the native sequence lacks -structure. Biological activity of these analogues in the rat renal adenylate cyclase assay in vitro and binding affinity in a radioreceptor assay were threefold those of unsubstituted PTH-(1–34). Peptide analogue design based on conformational prediction, rather than substitution of primary structure alone, offers an attractive alternative approach to the development of hormone analogues and antagonists. 相似文献
11.
To understand the information encoded in an amino-acid sequence, the authors have attempted to simplify the amino-acid sequence of photoactive yellow protein (PYP) with a set of simple rules. The rules are designed to reduce overlapping structural information. The simplified PYP protein, which was composed of only nine species of amino acids (Ser, Val, Asp, Lys, Phe, Met, Gly, Pro, and Cys), took a completely different structure than the native conformation. Even after the evolutionarily conserved residues were restored in the simplified protein, the PYP variant did not properly fold, indicating that the information encoded in the conserved residues is insufficient for the structure formation. Additional restorations of the substituted hydrophilic or hydrophobic residues did not lead to a variant that formed the native structure. The structural properties of these variants and the wild-type protein in aqueous solution differed. Partial simplification was successfully performed by creating chimeric proteins composed of combinations of wild-type PYP and sPYPIII. The structural characterization of each chimeric protein indicates that the important information on the structure formation is encoded in the beta-scaffold region. 相似文献
12.
The conformation of pinellin was studied by circular dichroism, which showed a minimum at 223 nm and a double maximum at 198–200 nm. The protein was rich in -sheet (about 40%) with little -helix, based on current CD analyses. It was stable betweenpH 4 and 10 beyond which it unfolded reversibly, but in alkaline solution, prolongly stored at, say,pH 12, it became irreversibly denatured. Thermal denaturation indicated a transition between 55° and 68°C; the solution at 80°C was partially renatured upon air-cooling back to room temperature. Addition of sodium dodecyl sulfate caused a sharp increase in -helix, which leveled off at 0.25 mM surfactant. 相似文献
13.
Francesca Catanzano Giuseppe Graziano Valeria Cafaro Giuseppe D’Alessio Alberto Di Donato Guido Barone 《International journal of biological macromolecules》1998,23(4):277-285
Four residues Pro19, Leu28, Cys31 and Cys32 proved to be the minimal structural requirements in determining the dimeric structure and the N-terminal segment swapping of bovine seminal ribonuclease, BS-RNase. We analyzed the content of secondary and tertiary structures in RNase A, P-RNase A, PL-RNase A, MCAM-PLCC-RNase A and MCAM-BS-RNase, performing near and far-UV CD spectra. It results that the five proteins have very similar native conformations. Thermal denaturation at pH 5.0 of the proteins, studied by means of CD measurements, proved reversible and well represented by the two-state ND transition model. Thermodynamic data are discussed in the light of the structural information available for RNase A and BS-RNase. 相似文献
14.
Ivan Guryanov Alex Bondesan Dario Visentini Andrea Orlandin Barbara Biondi Claudio Toniolo Fernando Formaggio Antonio Ricci Jacopo Zanon Walter Cabri 《Journal of peptide science》2016,22(7):471-479
Liraglutide is a new generation lipopeptide drug used for the treatment of type II diabetes. In this work, we describe new approaches for its preparation fully by chemical methods. The key step of these strategies is the synthesis in solution of the Lys/γ‐Glu building block, Fmoc‐Lys‐(Pal‐γ‐Glu‐OtBu)‐OH, in which Lys and Glu residues are linked through their side chains and γ‐Glu is Nα‐palmitoylated. This dipeptide derivative is then inserted into the peptide sequence on solid phase. As liraglutide is obtained with great purity and high yield, our approach can be particularly attractive for an industrial production. We also report here the results of a circular dichroism conformational analysis in a membrane mimetic environment that offers new insights into the mechanism of action of liraglutide. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
15.
Circular dichroism studies on conformational changes in protein molecules upon adsorption on ultrafine polystyrene particles 总被引:1,自引:0,他引:1
The conformational changes in well-characterized model proteins [bovine ribonuclease A (RNase A), horseradish peroxidase, sperm-whole myoglobin, human hemoglobin, and bovine serum albumin (BSA)] upon adsorption on ultrafine polystyrene (PS) particles have been studied using circular dichroism (CD) spectroscopy. These proteins were chosen with special attention to molecular flexibility. The ultrafine PS particles were negatively charged and have average diameters of 20 or 30 nm. Utilization of these ultrafine PS particles makes it possible to apply the CD technique to determine the secondary structure of proteins adsorbed on the PS surface. Effects of protein properties and adsorption conditions on the extent of the changes in the secondary structure of protein molecules upon adsorption on ultrafine PS particles were studied. The CD spectrum changes upon adsorption were significant in the "soft" protein molecules (myoglobin, hemoglobin, and BSA), while they were insingnificant in the "rigid" proteins (RNase A and peroxidase). The soft proteins sustained a marked decrease in alpha-helix content upon adsorption. Moreover, the native alpha-helix content, which is given as the percentage of the alpha-helix content in the free proteins, of adsorbed BSA was found to decrease with decreasing pH and increase with increasing adsorbed amount. These observations confirm some well-known hypotheses for the confirmational chages in protein molecules upon adsorption. (c) 1992 John Wiley & Sons, Inc. 相似文献
16.
《Chirality》2017,29(12):763-773
Isotope labeling has a long history in chemistry as a tool for probing structure, offering enhanced sensitivity, or enabling site selection with a wide range of spectroscopic tools. Chirality sensitive methods such as electronic circular dichroism are global structural tools and have intrinsically low resolution. Consequently, they are generally insensitive to modifications to enhance site selectivity. The use of isotope labeling to modify vibrational spectra with unique resolvable frequency shifts can provide useful site‐specific sensitivity, and these methods have been recently more widely expanded in biopolymer studies. While the spectral shifts resulting from changes in isotopic mass can provide resolution of modes from specific parts of the molecule and can allow detection of local change in structure with perturbation, these shifts alone do not directly indicate structure or chirality. With vibrational circular dichroism (VCD), the shifted bands and their resultant sign patterns can be used to indicate local conformations in labeled biopolymers, particularly if multiple labels are used and if their coupling is theoretically modeled. This mini‐review discusses selected examples of the use of labeling specific amides in peptides to develop local structural insight with VCD spectra. 相似文献
17.
The possible means by which insect cuticle is stabilised are examined: evidence is presented that secondary interactions between the components are very important in stabilisation. Cuticular proteins are shown to be able to adopt stable secondary structures. It is concluded that cuticle may well be stabilised by changes in the conformation of the proteins, changes in the secondary bonding between the proteins and the inclusion of a polymer filler. Crosslinking of the cuticular components may be of little consequence: the stabilisation would be a result of cuticular dehydration. 相似文献
18.
Sotirios‐Spyridon M. Vamvakas Leondios Leondiadis George Pairas Evy Manessi‐Zoupa Georgios A. Spyroulias Paul Cordopatis 《Journal of peptide science》2009,15(8):504-510
Angiotensin‐converting enzyme (ACE) is a key molecule of the renin–angiotensin–aldosterone system which is responsible for the control of blood pressure. For over 30 years it has become the target for fighting off hypertension. Many inhibitors of the enzyme have been synthesized and used widely in medicine despite the lack of ACE structure. The last 5 years the crystal structure of ACE separate domains has been revealed, but in order to understand how the enzyme works it is necessary to study its structure in solution. We present here the cloning, overexpression in Escherichia coli, purification and structural study of the Ala959 to Ser1066 region (ACE_C) that corresponds to the C‐catalytic domain of human somatic angiotensin‐I‐converting enzyme. ACE_C was purified under denatured conditions and the yield was 6 mg/l of culture. Circular dichroism (CD) spectroscopy indicated that 1,1,1‐trifluoroethanol (TFE) is necessary for the correct folding of the protein fragment. The described procedure can be used for the production of an isotopically labelled ACE959–1066 protein fragment in order to study its structure in solution by NMR spectroscopy. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. 相似文献
19.
Much effort has been invested in seeking to understand the thermodynamic basis of helix stability in both peptides and proteins. Recently, several groups have measured the helix-forming propensities of individual residues (Lyu, P. C., Liff, M. I., Marky, L. A., Kallenbach, N. R. Science 250:669–673, 1990; O'Neil, K. T., DeGrado, W. F. Science 250:646–651, 1990; Padmanabhan, S., Marqusee, S., Ridgeway, T., Laue, T. M., Baldwin, R. L. Nature (London) 344:268–270, 1990). Using Monte Carlo computer simulations, we tested the hypothesis that these differences in measured helix-forming propensity are due primarily to loss of side chain conformational entropy upon helix formation (Creamer, T. P., Rose, G. D. Proc. Natl. Acad. Sci. U.S.A. 89:5937–5941, 1992). Our previous study employed a rigid helix backbone, which is here generalized to a completely flexible helix model in order to ensure that earlier results were not a methodological artifact. Using this flexible model, side chain rotamer distributions and entropy losses are calculated and shown to agree with those obtained earlier. We note that the side chain conformational entropy calculated for Trp in our previous study was in error; a corrected value is presented. Extending earlier work, calculated entropy losses are found to correlate strongly with recent helix propensity scales derived from substitutions made within protein helices (Horovitz, A., Matthews, J. M., Fersht, A. R. J. Mol. Biol. 227:560–568, 1992; Blaber, M., Zhang, X.-J., Matthews, B. M. Science 260:1637–1640, 1993). In contrast, little correlation is found between these helix propensity scales and the accessible surface area buried upon formation of a model polyalanyl α-helix. Taken in sum, our results indicate that loss of side chain entropy is a major determinant of the helix-forming tendency of residues in both peptide and protein helices. © 1994 Wiley-Liss, Inc. 相似文献
20.
Tirso Pons Glay Chinea Osvaldo Olmea Alejandro Beldarraín Hernn Roca Gabriel Padrn Alfonso Valencia 《Proteins》1998,31(4):345-354
The DEX gene encodes an extracellular dextranase (EC 3.2.1.11); this enzyme hydrolyzes the α(1,6) glucosidic bond contained in dextran to release small isomaltosaccharides. Sequence analysis has revealed only one homologous sequence, CB-8 protein, from Arthrobacter sp., with 30% sequence identity. The secondary structure prediction for Dex was corroborated by circular dichroism measurements. To explore the possibility that Dex protein might adopt a fold similar to any known structure, we conducted a threading search of a three-dimensional structure database. This search revealed that the Dex sequence is compatible with the galactose oxidase/methanol dehydrogenase/sialidase fold. A structural model of Dex based on these results is physically and biologically plausible and leads to testable predictions, including the prediction that Asp246 and Glu299 might be catalytic residues. Also, according to this model the Dex enzyme has a mechanism of hydrolysis with net inversion of anomeric configuration. Proteins 31:345–354, 1998. © 1998 Wiley-Liss, Inc. 相似文献