首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vpr gene product of human immunodeficiency virus type (HIV-1) is a virion-associated regulatory protein. A transferable virion association motif for Vpr is located in the p6 domain of the HIV-1 Gag polyprotein. To map the sequences in p6 that are involved in Vpr incorporation, we analyzed the ability of mutant forms of p6 to direct the incorporation of Vpr into chimeric viral particles. Our results show that the determinants which govern Vpr incorporation are largely confined to a C-terminal region of the p6 domain. Within this region, three hydrophobic residues in a highly conserved sequence motif (L-X-S-L-F-G) are absolutely required. Remarkably, the transfer of the conserved motif and of a single flanking residue to a heterologous Gag polyprotein was sufficient to transfer the ability to incorporate Vpr at moderate levels. The transfer of residues 32 to 46 of p6 led to Vpr incorporation levels that were comparable to those obtained with full-length HIV-1 Gag protein, indicating that this region contains essentially all the information required for efficient Vpr incorporation.  相似文献   

2.
The vpr gene of human immunodeficiency virus type 1 (HIV-1) encodes a virion-associated regulatory protein. Mutagenesis has shown that the virion association of Vpr requires sequences near the C terminus of the HIV-1 Gag polyprotein Pr55gag. To investigate whether Vpr incorporation is mediated by a specific domain of Pr55gag, we examined the ability of chimeric HIV-1/Moloney murine leukemia virus (MLV) Gag polyproteins to direct the incorporation of Vpr. Vpr expressed in trans did not associate with particles formed by the authentic MLV Gag polyprotein or with particles formed by chimeric Gag polyproteins that had the matrix (MA) or capsid (CA) domain of MLV precisely replaced by the corresponding domain of HIV-1HXB2. By contrast, Vpr was efficiently incorporated upon replacement of the C-terminal nucleocapsid (NC) domain of the MLV Gag polyprotein with HIV-1 p15 sequences. Vpr was also efficiently incorporated into particles formed by a MLV Gag polyprotein that had the HIV-1 p6 domain fused to its C terminus. Furthermore, a deletion analysis revealed that a conserved region near the C terminus of the p6 domain is essential for Vpr incorporation, whereas sequences downstream of the conserved region are dispensable. These results show that a virion association motif for Vpr is located within residues 1 to 46 of p6.  相似文献   

3.
The human immunodeficiency virus type 1 (HIV-1) Gag protein precursor, Pr55Gag, contains at its C-terminal end a proline-rich, 6-kDa domain designated p6. Two functions have been proposed for p6: incorporation of the HIV-1 accessory protein Vpr into virus particles and virus particle production. To characterize the role of p6 in the HIV-1 life cycle and to map functional domains within p6, we introduced a number of nonsense and single and multiple amino acid substitution mutations into p6. Following the introduction of the mutations into the full-length HIV-1 molecular clone pNL4-3, the effects on Gag protein expression and processing, virus particle production, and virus infectivity were analyzed. The production of mutant virus particles was also examined by transmission electron microscopy. The results indicate that (i) p6 is required for efficient virus particle production from a full-length HIV-1 molecular clone; (ii) a Pro-Thr-Ala-Pro sequence, located between residues 7 and 10 of p6, is critical for virus particle production; (iii) mutations outside the Pro-Thr-Ala-Pro motif have little or no effect on virus assembly and release; (iv) the p6 defect is manifested at a late stage in the budding process; and (v) mutations in p6 that severely reduce virion production in HeLa cells also block or significantly delay the establishment of a productive infection in the CEM (12D-7) T-cell line. We further demonstrate that mutational inactivation of the viral protease reverses the p6 defect, suggesting a functional linkage between p6 and the proteolytic processing of the Gag precursor protein during the budding of progeny virions.  相似文献   

4.
We have previously demonstrated that the Gag p9 protein of equine infectious anemia virus (EIAV) is functionally homologous with Rous sarcoma virus (RSV) p2b and human immunodeficiency virus type 1 (HIV-1) p6 in providing a critical late assembly function in RSV Gag-mediated budding from transfected COS-1 cells (L. J. Parent et al., J. Virol. 69:5455-5460, 1995). In light of the absence of amino acid sequence homology between EIAV p9 and the functional homologs of RSV and HIV-1, we have now designed an EIAV Gag-mediated budding assay to define the late assembly (L) domain peptide sequences contained in the EIAV p9 protein. The results of these particle budding assays revealed that expression of EIAV Gag polyprotein in COS-1 cells yielded extracellular Gag particles with a characteristic density of 1.18 g/ml, while expression of EIAV Gag polyprotein lacking p9 resulted in a severe reduction in the release of extracellular Gag particles. The defect in EIAV Gag polyprotein particle assembly could be corrected by substituting either the RSV p2b or HIV-1 p6 protein for EIAV p9. These observations demonstrated that the L domains of EIAV, HIV-1, and RSV were interchangeable in mediating assembly of EIAV Gag particles in the COS-1 cell budding assay. To localize the L domain of EIAV p9, we next assayed the effects of deletions and site-specific mutations in the p9 protein on its ability to mediate budding of EIAV Gag particles. Analyses of EIAV Gag constructs with progressive N-terminal or C-terminal deletions of the p9 protein identified a minimum sequence of 11 amino acids (Q20N21L22Y23P24D25L26S27E28I29K30) capable of providing the late assembly function. Alanine scanning studies of this L-domain sequence demonstrated that mutations of residues Y23, P24, and L26 abrogated the p9 late budding function; mutations of other residues in the p9 L domain did not substantially affect the level of EIAV Gag particle assembly. These data indicate that the L domain in EIAV p9 utilizes a YXXL motif which we hypothesize may interact with cellular proteins to facilitate virus particle budding from infected cells.  相似文献   

5.
The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  相似文献   

6.
D T Poon  J Wu    A Aldovini 《Journal of virology》1996,70(10):6607-6616
Interaction of the human immunodeficiency virus type 1 (HIV-1) Gag precursor polyprotein (Pr55Gag) with the viral genomic RNA is required for retroviral replication. Mutations that reduce RNA packaging efficiency have been localized to the highly basic nucleocapsid (NC) p7 domain of Pr55Gag, but the importance of the basic amino acid residues in specific viral RNA encapsidation and infectivity has not been thoroughly investigated in vivo. We have systematically substituted the positively charged residues of the NC domain of Pr55Gag in an HIV-1 viral clone by using alanine scanning mutagenesis and have assayed the effects of these mutations on virus replication, particle formation, and RNA packaging in vivo. Analysis of viral clones with single substitutions revealed that certain charged amino acid residues are more critical for RNA packaging efficiency and infectivity than others. Analysis of viral clones with multiple substitutions indicates that the presence of positive charge in each of three independent domains--the zinc-binding domains, the basic region that links them, and the residues that Hank the two zinc-binding domains--is necessary for efficient HIV-1 RNA packaging. Finally, we note that some mutations affect virus replication more drastically than RNA incorporation, providing in vivo evidence for the hypothesis that NC p7 may be involved in aspects of the HIV life cycle in addition to RNA packaging.  相似文献   

7.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.  相似文献   

8.
Vpr and Vpx proteins from human and simian immunodeficiency viruses (HIV and SIV) are incorporated into virions in quantities equivalent to those of the viral Gag proteins. We demonstrate here that Vpr and Vpx proteins from distinct lineages of primate lentiviruses were able to bind to their respective Gag precursors. The capacity of HIV type 1 (HIV-1) Vpr mutants to bind to Pr55Gag was correlated with their incorporation into virions. Molecular analysis of these interactions revealed that they required the C-terminal p6 domain of the Gag precursors. While the signal for HIV-1 Vpr binding lies in the leucine triplet repeat region of the p6 domain reported to be essential for incorporation, SIVsm Gag lacking the equivalent region still bound to SIVsm Vpr and Vpx, indicating that the determinants for Gag binding are located upstream of this region of the p6 domain. Binding to Gag cleavage products showed that HIV-1 Vpr interacted directly with the nucleocapsid protein (NC), whereas SIVsm Vpr and Vpx did not interact with NC but with the p6 protein. These results (i) reveal differences between HIV-1 and SIVsm for the p6 determinants required for Vpr and Vpx binding to Gag and (ii) suggest that HIV-1 Vpr and SIVsm Vpr and Vpx interact with distinct cleavage products of the precursor following proteolytic processing in the virions.  相似文献   

9.
X Wu  J A Conway  J Kim    J C Kappes 《Journal of virology》1994,68(10):6161-6169
Viral protein X (Vpx) is a human immunodeficiency virus type 2 (HIV-2) and simian immunodeficiency virus accessory protein that is packaged into virions in molar amounts equivalent to Gag proteins. To delineate the processes of virus assembly that mediate Vpx packaging, we used a recombinant vaccinia virus-T7 RNA polymerase system to facilitate Gag protein expression, particle assembly, and extracellular release. HIV genes were placed under control of the bacteriophage T7 promoter and transfected into HeLa cells expressing T7 RNA polymerase. Western immunoblot analysis detected p55gag and its cleavage products p39 and p27 in purified particles derived by expression of gag and gag-pol, respectively. In trans expression of vpx with either HIV-2 gag or gag-pol gave rise to virus-like particles that contained Vpx in amounts similar to that detected in HIV-2 virus produced from productively infected T cells. Using C-terminal deletion and truncation mutants of HIV-2 Gag, we mapped the p15 coding sequence for determinants of Vpx packaging. This analysis revealed a region (residues 439 to 497) downstream of the nucleocapsid protein (NC) required for incorporation of Vpx into virions. HIV-1/HIV-2 gag chimeras were constructed to further characterize the requirements for incorporation of Vpx into virions. Chimeric HIV-1/HIV-2 Gag particles consisting of HIV-1 p17 and p24 fused in frame at the C terminus with HIV-2 p15 effectively incorporate Vpx, while chimeric HIV-2/HIV-1 Gag particles consisting of HIV-2 p17 and p27 fused in frame at the C terminus with HIV-1 p15 do not. Expression of a 68-amino-acid sequence of HIV-2 containing residues 439 to 497 fused to the coding regions of HIV-1 p17 and p24 also produced virus-like particles capable of packaging Vpx in amounts similar to that of full-length HIV-2 Gag. Sucrose gradient analysis confirmed particle association of Vpx and Gag proteins. These results demonstrate that the HIV-2 Gag precursor (p55) regulates incorporation of Vpx into virions and indicates that the packaging signal is located within residues 439 to 497.  相似文献   

10.
The structural polyprotein Gag of human immunodeficiency virus type 1 (HIV-1) is necessary and sufficient for formation of virus-like particles. Its C-terminal p6 domain harbors short peptide motifs that facilitate virus release from the plasma membrane and mediate incorporation of the viral Vpr protein. p6 has been shown to be the major viral phosphoprotein in HIV-1-infected cells and virions, but the sites and functional relevance of p6 phosphorylation are not clear. Here, we identified phosphorylation of several serine and threonine residues in p6 in purified virus preparations using mass spectrometry. Mutation of individual candidate phosphoacceptor residues had no detectable effect on virus assembly, release, and infectivity, however, suggesting that phosphorylation of single residues may not be functionally relevant. Therefore, a comprehensive mutational analysis was conducted changing all potentially phosphorylatable amino acids in p6, except for a threonine that is part of an essential peptide motif. To avoid confounding changes in the overlapping pol reading frame, mutagenesis was performed in a provirus with genetically uncoupled gag and pol reading frames. An HIV-1 derivative carrying 12 amino acid changes in its p6 region, abolishing all but one potential phosphoacceptor site, showed no impairment of Gag assembly and virus release and displayed only very subtle deficiencies in viral infectivity in T-cell lines and primary lymphocytes. All mutations were stable over 2 weeks of culture in primary cells. Based on these findings, we conclude that phosphorylation of p6 is dispensable for HIV-1 assembly, release, and infectivity in tissue culture.  相似文献   

11.
The C terminus of the HIV-1 Gag protein contains a proline-rich domain termed p6(Gag). This domain has been shown to play a role in efficient virus release and incorporation of Vpr into virions. In a previous study (X. F. Yu, L. Dawson, C. J. Tian, C. Flexner, and M. Dettenhofer, J. Virol. 72:3412-3417, 1998), we observed that the removal of the p6 domain of Gag as well as drastic mutations in the PTAP motif resulted in reduced virion-associated Pol proteins from transfected COS cells. In the present study, amino acid substitutions at residues 5 and 7 of p6(Gag) resulted in a cell type-dependent replication of the mutant virus in CD4(+) T cells; the virus was replication competent in Jurkat cells but restricted in H9 cells and primary blood-derived monocytes. Established Jurkat and H9 cell lines expressing p6(Gag) mutant and parental virus were used to further understand this defect. Mutant virions produced from H9 cells, which displayed no defect in extracellular virion production, showed an approximately 16-fold reduction in Pol protein levels, whereas the levels of Pol proteins were only marginally reduced in mutant virions produced from Jurkat cells. The reduction in the virion-associated Pol proteins could not be accounted for by differences in the levels of intracellular p160(Gag-Pol) or in the interaction between p55(Gag) and p160(Gag-Pol) precursors. Electron microscopic analysis of the p6(Gag) mutant virions showed a predominately immature morphology in the absence of significant defects in Gag proteolytic cleavage. Taken together, these data suggest that the proline-rich motif of p6(Gag) is involved in the late stages of virus maturation, which include the packaging of cleaved Pol proteins in viral particles, a process which may involve cell-type-specific factors.  相似文献   

12.
W Paxton  R I Connor    N R Landau 《Journal of virology》1993,67(12):7229-7237
The product of the vpr open reading frame of human immunodeficiency virus type 1 (HIV-1) is a 15-kDa, arginine-rich protein that is present in virions in molar quantities equivalent to that of Gag. We report here the results of our investigations into the mechanism by which Vpr is incorporated into virions during assembly in infected cells. For these studies we used an expression vector encoding a Vpr molecule fused at its amino terminus to a nine-amino-acid peptide from influenza virus hemagglutinin. The tagged Vpr expression vector and a vpr mutant HIV-1 provirus were used to cotransfect COS cells, and the resulting virions were tested for the presence of the tagged protein on immunoblots probed with monoclonal antibody against the hemagglutinin peptide. The COS-produced virions were found to contain readily detectable amounts of tagged Vpr and smaller amounts of a putative tagged Vpr dimer. Infectivity of the particles was not altered by incorporation of tagged Vpr. Our results using this system in combination with mutant HIV-1 proviruses suggested that incorporation of Vpr into virions requires the carboxy-terminal Gag protein of HIV-1 (p6) but not gp160, Pol, or genomic viral RNA. In addition, analysis of mutated, tagged Vpr molecules suggested that amino acids near the carboxy terminus (amino acids 84 to 94) are required for incorporation of Vpr into HIV-1 virions. The single cysteine residue near the carboxy terminus was required for production of a stable protein. Arginine residues tested were not important for incorporation or stability of tagged Vpr. These results suggested a novel strategy for blocking HIV-1 replication.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) requires the incorporation of cyclophilin A (CypA) for replication. CypA is packaged by binding to the capsid (CA) region of Gag. This interaction is disrupted by cyclosporine (CsA). Preventing CypA incorporation, either by mutations in the binding region of CA or by the presence of CsA, abrogates virus infectivity. Given that CypA possesses an isomerase activity, it has been proposed that CypA acts as an uncoating factor by destabilizing the shell of CA that surrounds the viral genome. However, because the same domain of CypA is responsible for both its isomerase activity and its capacity to be packaged, it has been challenging to determine if isomerase activity is required for HIV-1 replication. To address this issue, we fused CypA to viral protein R (Vpr), creating a Vpr-CypA chimera. Because Vpr is packaged via the p6 region of Gag, this approach bypasses the interaction with CA and allows CypA incorporation even in the presence of CsA. Using this system, we found that Vpr-CypA rescues the infectivity of viruses lacking CypA, either produced in the presence of CsA or mutated in the CypA packaging signal of CA. Furthermore, a Vpr-CypA mutant which has no isomerase activity and no capacity to bind to CA also rescues HIV-1 replication. Thus, this study demonstrates that the isomerase activity of CypA is not required for HIV-1 replication and suggests that the interaction of the catalytic site of CypA with CA serves no other function than to incorporate CypA into viruses.  相似文献   

14.
The matrix domain of the human immunodeficiency virus type 1 (HIV-1) Gag protein contains a highly basic region near its amino terminus. It has been proposed that this basic domain, in conjunction with the HIV-1 accessory protein Vpr, is responsible for the localization of the HIV-1 preintegration complex to the nucleus in nondividing cells. It has also been postulated that the matrix basic domain assists in the targeting of the HIV-1 Gag precursor Pr55Gag to the plasma membrane during virus assembly. To evaluate the role of this highly basic sequence during infection of primary human monocyte-derived macrophages, single- and double-amino-acid-substitution mutations were introduced, and the effects on virus particle production, Gag protein processing, envelope glycoprotein incorporation into virus particles, and virus infectivity in the CEM(12D-7) T-cell line, peripheral blood mononuclear cells, and primary human monocyte-derived macrophages were analyzed. Although modest effects on virus particle production were observed with some of the mutants, none abolished infectivity in primary human monocyte-derived macrophages. In contrast with previously reported studies involving some of the same matrix basic domain mutants, infectivity in monocyte-derived macrophages was retained even when combined with a vpr mutation.  相似文献   

15.
Y L Lu  P Spearman    L Ratner 《Journal of virology》1993,67(11):6542-6550
The subcellular localization of human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) was examined by subcellular fractionation. In HIV-1-infected peripheral blood mononuclear cells, Vpr was found in the nuclear and membrane fractions as well as the conditioned medium. Expression of Vpr without other HIV-1 proteins, in two different eukaryotic expression systems, demonstrated a predominant localization of Vpr in the nuclear matrix and chromatin extract fractions. Deletion of the carboxyl-terminal 19-amino-acid arginine-rich sequence impaired Vpr nuclear localization. Indirect immunofluorescence confirmed the nuclear localization of Vpr and also indicated a perinuclear location. Expression of Vpr alone did not result in export of the protein from the cell, but when coexpressed with the Gag protein, Vpr was exported and found in virus-like particles. A truncated Gag protein, missing the p6 sequence and a portion of the p9 sequence, was incapable of exporting Vpr from the cell. Regulation of Vpr localization may be important in the influence of this protein on virus replication.  相似文献   

16.
Sova P  Volsky DJ  Wang L  Chao W 《Journal of virology》2001,75(12):5504-5517
Vif is a human immunodeficiency virus type 1 (HIV-1) protein that is essential for the production of infectious virus. Most of Vif synthesized during HIV infection localizes within cells, and the extent of Vif packaging into virions and its function there remain controversial. Here we show that a small but detectable amount of Vif remains associated with purified virions even after their treatment with the protease subtilisin. However, treatment of these virions with 1% Triton X-100 revealed that most of the virion-associated Vif segregated with detergent-resistant virus particles consisting of unprocessed Gag, indicating that detergent-soluble, mature virions contain very little Vif. To investigate the control of Vif packaging in immature virus particles, we tested its association with Gag-containing virus-like particles (VLPs) in a Vif and Gag coexpression system in human cells. Only a small proportion of Vif molecules synthesized in this system became packaged into VLPs, and the VLP-associated Vif was protected from exogenous protease and detergent treatment, indicating that it is stably incorporated into immature virion-like cores. About 10-fold more Vpr than Vif was packaged into VLPs but most of the VLP-associated Vpr was removed by treatment with detergent. Mutagenesis of the C-terminal sequences in Gag previously shown to be responsible for interaction with Vif did not reduce the extent of Vif packaging into Gag VLPs. Surprisingly, short deletions in the capsid domain (CA) of Gag (amino acid residues 284 to 304 and 350 to 362) increased Vif packaging over 10-fold. The 350 to 363 deletion introduced into CA in HIV provirus also increased Vif incorporation into purified virions. Our results show that Vif can be packaged at low levels into aberrant virus particles or immature virions and that Vif is not present significantly in mature virions. Overall, these results indicate that the Vif content in virions is tightly regulated and also argue against a function of virion-associated Vif.  相似文献   

17.
All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell.  相似文献   

18.
The human immunodeficiency virus (HIV) Pr55Gag precursor proteins direct virus particle assembly. While Gag-Gag protein interactions which affect HIV assembly occur in the capsid (CA) domain of Pr55Gag, the nucleocapsid (NC) domain, which functions in viral RNA encapsidation, also appears to participate in virus assembly. In order to dissect the roles of the NC domain and the p6 domain, the C-terminal Gag protein domain, we examined the effects of NC and p6 mutations on virus assembly and RNA encapsidation. In our experimental system, the p6 domain did not appear to affect virus release efficiency but p6 deletions and truncations reduced the specificity of genomic HIV-1 RNA encapsidation. Mutations in the nucleocapsid region reduced particle release, especially when the p2 interdomain peptide or the amino-terminal portion of the NC region was mutated, and NC mutations also reduced both the specificity and the efficiency of HIV-1 RNA encapsidation. These results implicated a linkage between RNA encapsidation and virus particle assembly or release. However, we found that the mutant ApoMTRB, in which the nucleocapsid and p6 domains of HIV-1 Pr55Gag were replaced with the Bacillus subtilis MtrB protein domain, released particles efficiently but packaged no detectable RNA. These results suggest that, for the purposes of virus-like particle assembly and release, NC can be replaced by a protein that does not appear to encapsidate RNA.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) particles consists of two molecules of genomic RNA as well as molecules originating from gag, pol, and env products, all synthesized as precursor proteins. The 96-amino-acid Vpr protein, the only virion-associated HIV-1 regulatory protein, is not part of the virus polyprotein precursors, and its incorporation into virus particles must occur by way of an interaction with a component normally found in virions. To investigate the mechanism of incorporation of Vpr into the HIV-1 virion, Vpr- proviral DNA constructs harboring mutations or deletions in specific virion-associated gene products were cotransfected with Vpr expressor plasmids in COS cells. Virus released from the transfected cells was tested for the presence of Vpr by immunoprecipitation with Vpr-specific antibodies. The results of these experiments show that Vpr is trans-incorporated into virions but at a lower efficiency than when Vpr is expressed from a proviral construct. The minimal viral genetic information necessary for Vpr incorporation was a deleted provirus encoding only the pr55gag polyprotein precursor. Incorporation of Vpr requires the expression but not the processing of gag products and is independent of pol and env expression. Direct interaction of Vpr with the Pr55gag precursor protein was demonstrated by coprecipitation experiments with gag product-specific antibodies. Overall, these results indicate that HIV-1 Vpr is incorporated into the nascent virion through an interaction with the Gag precursor polyprotein and demonstrate a novel mechanism by which viral protein can be incorporated into virus particles.  相似文献   

20.
Incorporation of Vpx into human immunodeficiency virus type 2 (HIV-2) virus-like particles is mediated by the Gag polyprotein. We have identified residues 15 to 40 of Gag p6 and residues 73 to 89 of Vpx as being necessary for virion incorporation. In addition, we show enhanced in vitro binding of Vpx to a chimeric HIV-1/HIV-2 Gag construct containing residues 2 to 49 of HIV-2 p6 and demonstrate that the presence of residues 73 to 89 of Vpx allows for in vitro binding to HIV-2 Gag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号