首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The involvement of the xanthophyll cycle in photoprotection of N-deficient spinach (Spinacia oleracea L. cv Nobel) was investigated. Spinach plants were fertilized with 14 mM nitrate (control, high N) versus 0.5 mM (low N) fertilizer, and grown under both high- and low-light conditions. Plants were characterized from measurements of photosynthetic oxygen exchange and chlorophyll fluorescence, as well as carotenoid and cholorophyll analysis. Compared with the high-N plants, the low-N plants showed a lower capacity for photosynthesis and a lower chlorophyll content, as well as a lower rate of photosystem II photosynthetic electron transport and a corresponding increase in thermal energy dissipation activity measured as nonphotochemical fluorescence quenching. The low-N plants displayed a greater fraction of the total xanthophyll cycle pool as zeaxanthin and antheraxanthin at midday, and an increase in the ratio of xanthophyll cycle pigments to total chlorophyll. These results indicate that under N limitation both the light-collecting system and the photosynthetic rate decrease. However, the increased dissipation of excess energy shows that there is excess light absorbed at midday. We conclude that spinach responds to N limitation by a combination of decreased light collection and increased thermal dissipation involving the xanthophyll cycle.  相似文献   

2.
The pigment and quinone content of wild-type barley ( Hordeum vulgare L., cv. Svalöfs Bonus) and of two photosynthetic mutants was assayed. Wild type plants and the photosystem Hacking mutant viridis zb63 contained chlorophyll a and b. whereas chlorina-f2 contained only chlorophyll a The inability of the mutant chlorina-f2 to convert chlorophyll a into chlorophyll a appears to he the primary effect of the mutation. In both mutants, the carotenoid composition was virtually identical to that of the wild type. As compared to the wild type. chlorina-f2 contained less lutein and neoxanthin. The mutant viridis-zb63 contained less β-carotene but more antheraxanthin and xeaxanthin than the wild type. The quinone content and composition of the wild type and the photosynthetic mutants was similar, and both mutants biosynthesized plastid quinones and chromanols starting from [14C]-labeled tyrosine. The data indicate that carotenoid and quinone biosynthesis are not altered in the two mutants as compared to the wild type.  相似文献   

3.
A model is presented that gives a quantitative picture of the distribution of the photosynthetic components in the photosynthetic membrane of higher plants. A salient feature of the model is that most of the pigments are located in the grana where photosystem I and II carry out linear electron transport, whereas the stroma lamellae, which harbour <20% of the pigments, carry out photosystem-I-mediated cyclic electron transport. This arrangement derives from the observation that more pigments are associated with photosystem I, which therefore captures more quanta than photosystem II. The excess pigments associated with photosystem I are thought to be located in the stroma lamellae.  相似文献   

4.
The effect of foliar spray with 10−12 M aqueous solutions of 24-epibrassinolide or a synthetic androstane analogue of castasterone on the activity of photosystem (PS) 1, the Hill reaction activity, the content of photosynthetic pigments and the specific leaf mass was examined for three different leaves developed after brassinosteroid (BR) treatment in two inbred lines of field-grown maize and their F1 hybrid. The brassinosteroids significantly affected neither the efficiency of photosynthetic electron transport, nor the content of chlorophylls or carotenoids.  相似文献   

5.
The effect of Cu toxicity on photosynthetic function, chlorophyll and Ca2+ content of Cu-tolerant Silene compacta plants grown in nutrient solution was studied. Since, in plants grown under 8 μ M Cu, the chlorophyll and Ca2+ concentration as well as the photosystem II (PSII) photochemistry were increased, compared to the control, the development of an adaptive mechanism of the Cu-tolerant ecotype of S. compacta to 8 μ M Cu is suggested. Increased Cu tolerance of the S. compacta ecotype reflects modulation of the photosynthetic apparatus to optimize photosynthesis. However, exposure of plants to 160 μ M Cu resulted in a marked increase of the fraction of closed PSII centres and decreased quantum yield of PSII electron transport (ΦPSU) which was accompanied by a significant decline of relative quantum yield for O2 evolution (Aox/Apt). The concentration of chlorophyll and Ca2+ in leaves also decreased significantly under 160 μ M Cu treatment. Photochemical quenching (qp) displayed a reduction as a result of perturbation of the photosynthetic electron transfer chain, while non-photochemical quenching (qN) increased. High Cu treatment reduced photosynthetic productivity of S. compacta plants which can be attributed, in part, to pertubation of photosynthetic process and photosynthetic pigments as well as to Ca2+ loss.  相似文献   

6.
Sarcocornia fruticosa (L.) A.J. Scott is found in coastal marshes of south-west Spain, growing under a very wide range of interstitial soil salinity from 10 m M up to nearly 1000 m M . A glasshouse experiment was designed to investigate the effect of this range of salinities on the morphology and the photosynthetic apparatus of S. fruticosa by measuring growth rate, photosynthetic and non-photosynthetic area, atrophy of distal branch ends, water status, chlorophyll fluorescence parameters, gas exchange and photosynthetic pigment concentrations. The long-term effects of salinity on the growth of S. fruticosa were mainly determined by the extent of photosynthetic area rather than the variations in net photosynthetic rate. Photosynthetic area was reduced at 1030 m M as a result of a decrease in the length of the photosynthetic portions. This was induced by fewer internodes and, at salinities lower than 510 m M , smaller internode diameter. Net photosynthetic rate increased as the quantum efficiency of photosystem II decreased in the different salinity treatments, which means that the plant could be increasing photorespiration and/or using cyclic electron transport as additional photoprotective mechanisms. The recorded drop in net photosynthetic rate at higher salinities appeared to be due to a reduction in stomatal conductance. The results indicate that S. fruticosa is capable of tolerating very high and continued exposure to salt, showing its greatest growth rate at 510 m M NaCl.  相似文献   

7.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

8.
This research investigated the SO2-induced effects on photosynthetic apparatus in two barley (Hordeum vulgare L.) cultivars (cv), Panda and Express. Following a chronic treatment with SO2 (80 ppb, 75 d) neither cv showed any visible signs of injury or chlorosis on leaf surfaces, while a significant reduction in Amax and Gw was detected in both cvs, although to different extents. Thylakoids of SO2-treated plants showed a decrease in the electron transport activity at the whole chain, photosystem II (PSII) and photosystem I (PSI) level in both cvs. The high performance liquid chromatography (HPLC) analysis of leaf pigments revealed a significant decrease in both cvs, more pronounced in Panda than in Express. Deriphat-polyacrilamide gel electrophoresis (Deriphat-PAGE) and two dimensional (2-D) electrophoretic analyses of the pigment-protein complexes did not show differences in SO2-treated samples of either cv. HPLC analysis of the green bands also showed no differences in the pigment content of fumigated samples of either cv, except for a decrease in β-carotene content and xanthophyll cycle pigment (VAZ) content respectively at band 1 (PSI) and band 5 (minor light-harvesting polypeptides of PSII) level in cv Panda, where the de-epoxidation index (DEP) significantly increased, while in Express, an increase in VAZ content and DEP value of band 5 was observed. These results suggest that the decrease in the photosynthetic activity can be ascribed, in addition to stomata closure induced by SO2, to a generalised, rather than specific, pollutant effect on photosynthetic apparatus, which could be interpreted as an adaptation to the adverse environment.  相似文献   

9.
Light-dependent inhibition of photosynthetic electron transport by zinc   总被引:2,自引:0,他引:2  
The effects of zinc concentrations up to 400 μ M were examined on three photosynthetic electron transport reactions of thylakoids isolated from Pisum sativum L. cv. Meteor. Zinc (400 μ M ) had no effect on photosystem I mediated electron transport from reduced N,N,N',N'-tetramethyl- p -phenylenediamine to methyl viologen, but inhibited uncoupled electron flow from water to methyl viologen by ca 50% and to 2,6-dichlorophenol-indophenol (DCPIP) by ca 30% at saturating light levels. Zinc inhibition of DCPIP photoreduction was independent of the light intensity to which thylakoids were exposed. Decreasing the photon flux density below 400 μmol m−2 s−1 produced a logarithmic reduction in the zinc-induced inhibition of methyl viologen photoceduction; a stimulation of this reaction was observed below 80 μmol photons m−2 s−1. Increasing light intensity decreased the amount of zinc tightly bound to the thylakoid membranes, but increased the weakly associated zinc which could be removed by washing the membranes with buffer containing Mg2. The results suggest that zinc acts on the photosynthetic electron transport system at two sites. Site 1 is on the oxidizing side of photosystem 2 and the inhibition by zinc is independent of the light intensity. Site 2 is between photosystems 1 and 2 and the electron flow can be positively or negatively affected by zinc depending on the light intensity.  相似文献   

10.
The effect of five topolins (meta-Topolin=mT; meta-Topolin riboside=mTR; meta-Methoxy topolin=MemT; meta-Methoxy topolin riboside=MemTR and 6-(meta-methoxy)-9-(tetrahydropyran-2-yl)-topolin=MemTTHP) on the photosynthetic pigments and leaf structures of micropropagated 'Williams' bananas was compared with the commonly used benzyladenine (BA). Surface-decontaminated explants were cultured for 70 d on modified Murashige and Skoog (MS) basal medium and supplemented with 10, 20 or 30μM cytokinins (CKs). At 10 d intervals, the photosynthetic pigments were quantified via spectrophotometric methods for 7 cycles. Generally, the maximum pigment content was attained between 40 and 50 d. The control plantlets had the highest pigment content (1150μg/g FW). Among the CKs, 10μM MemTTHP generally had the best pigment stimulatory effect at the same period. After 40 d, scanning electron microscopy (SEM) of the foliar surface showed that the stomata density was highest in 10μM MemTTHP-treated and lowest in 10μM MemTR-treated plantlets. The stomatal structure and pore area also varied with the type and concentration of CK added. Generally, prolonging culture duration as well as increasing CK concentrations reduced the pigment content. However, the drastic breakdown in chlorophyll pigments beyond 50 d was slightly inhibited by the presence of mT, mTR, MemTTHP and BA compared to the control. The CK-treated plantlets at equimolar concentration had comparable chlorophyll a/b and total chlorophyll/carotenoid ratios after 10 d; probably as an adaptive measure. At the end of the current study, 10μM mT and mTR plantlets remained green as reflected by the higher total chlorophyll/carotenoid ratio as well as by the visual observations. A well-developed photosynthetic apparatus enhances the survival of in vitro plantlets during the acclimatization stage. Current findings provide some insight into the role of meta-topolins on photosynthetic parameters in vitro, which inevitably partly contributed to the better acclimatization capability of meta-topolin-regenerants.  相似文献   

11.
The comparative effects of decapitation and defoliation on the senescence-induced inactivation of photosynthetic activity in primary leaves of bean plants were investigated. Decapitation was performed during different phases of bean plant ontogenesis, immediately after the appearance of the 1st, 2nd, 3rd and 4th composite leaf. In addition, we examined a variant with primary leaves and stem with an apical bud, but without composite leaves, i.e. defoliated plants. Analyses of chlorophyll fluorescence, millisecond delayed fluorescence and absorption at 830nm in primary leaves were undertaken to investigate the alterations in photosystems II and I electron transport during the decapitation-induced delayed senescence in the non-detached leaves. Analysis of the OKJIP transients using the JIP-test (see [Strasser R, Srivastava A, Tsimilli-Michael M. Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee, editors. Chlorophyll a fluorescence: a signature of photosynthesis. The Netherlands: Kluwer Academic Publishers, 2004; pp. 321-362]) showed an increase in several biophysical parameters of photosystem II in decapitated plants, specifically, the density of active reaction centers on a chlorophyll basis, the yields of trapping and electron transport, and the performance index. We also observed a decrease in the absorbed light energy per reaction center. Such a decrease in light absorption could be a result of the photosystem II down regulation that appeared as an increase in Q(B)-non-reducing photosystem II centers. The effect was identical when all leaves except the primary leaves were removed. The variant with a preserved apical bud, the defoliated plant, showed values similar to those of decapitated plants with primary leaves only. The changes in the induction curves of the delayed fluorescence also indicated an acceleration of electron transport beyond photosystem II in the decapitated and in defoliated plants. In these plants, the photosystem I-driven electron transport was accelerated, and the size of the plastoquinone pool was enhanced. It was established that decapitation can retard the senescence of primary leaves, can expand leaf life span and can cause activation of both photosystems I and II electron transport. The decapitation procedure shows similarities to the process of defoliation. The overcompensation effect that is developed after defoliation could initially be manifested as an acceleration of the linear photosynthetic electron flow in the rest of the leaves.  相似文献   

12.
测定了小麦(Triticum aestivum L.)感染小麦条锈病后的光合常数,以及叶绿素含量、类囊体膜光合电子传递速率和光合反应中心D1蛋白的变化.实验显示,条锈病侵染导致感病小麦叶片净光合速率与叶绿素含量降低;抗病小麦经侵染后净光合速率却有恢复过程,叶绿素含量先降后升.此外,感病小麦叶片被侵染后全链电子传递速率受到抑制,PSII电子传递速率的变化与全链电子传递速率的变化趋势相似,但PSI电子传递速率受到的影响较小;抗病小麦小麦叶片被侵染后电子传递速率所受影响较小.同时发现,病程中,感病和抗病小麦PSII的光合反应中心D1蛋白含量变化总是与PSII电子传递速率的变化类似,推测D1蛋白的表达量变化是引起PSII电子传递活性与全链电子传递速率变化的主要因素之一.  相似文献   

13.
Photosystem II (PSII) from Cu-deficient pea plants ( Pisum sativum L., cv. Lincoln) has been investigated for electron transport activity, Cu content, and changes in some lipid components. Total fatty acid content was lower that in control plants, with an additional shift in the C18 fatty acid patterns. Less α-linolenic and more linoleic and oleic acids were found. PSII preparations from Cu-depleted plants showed a decreased carotenoid content in light harvesting chlorophyll a/b complex of photosystem II (LHCII) and additional variations in pigment composition of pigment-protein complexes. In the green alga Dunaliella the effect of Cu deficiency on fatty acid composition was similar to that in pea plants, but the influence on the carotenoid pattern was much less pronounced.  相似文献   

14.
The adaptability of the thylakoid membrane to extended photoperiod (from natural to 24 h) was studied using a photoperiod-sensitive species ( Lycopersicon esculentum Mill. cv. Trend) and a non-photoperiod-sensitive species ( Capsicum annuum L. cv. Delphin). Our results have shown that thylakoid membranes of both species adapt to an extended photoperiod by increasing their photosystem II to photosystem I ratio (PSII/PSI) in order to provide a more balanced energy distribution between both photosystems to improve quantum yield. In tomato plants, these results correspond with a lower chlorophyll (Chl) a/b ratio, a decrease in Chl associated with PSI light-harvesting chlorophyll a/b protein complexes and with an increase in Chl associated with PSII light-harvesting chlorophyll a/b protein complexes. In spite of these changes, the electron transport capacity through PSII and PSI per unit of Chl and the light saturation point of PSII remained unchanged. The inability of tomato plants to use supplemental light for an extended photoperiod is not the result of photoinhibitory conditions. In pepper plants a significant increase in electron transport capacity and in the light saturation point of PSII was found. There was a significant increase in CO2 assimilation when the light period was increased from 12 to 24 h. In contrast to tomato, pepper plants adapt to a 24-h photoperiod by increasing their carboxylation capacity which is accompanied by an increase in electron transport capacity and the light saturation point.  相似文献   

15.
The aim of this research was to determine whether exogenous abscisic acid (ABA) applied immediately after ex vitro transfer of in vitro grown plants can improve their acclimatization. Tobacco (Nicotiana tabacum L.) plantlets were transferred into pots with Perlite initially moistened either by water or 50 μM ABA solution and they were grown under low (LI) or high (HI) irradiance of 150 and 700 μmol m−2 s−1, respectively. Endogenous content of ABA in tobacco leaves increased considerably after ABA application and even more in plants grown under HI. Stomatal conductance, transpiration rate and net photosynthetic rate decreased considerably 1 d after ex vitro transfer and increased thereafter. The gas exchange parameters were further decreased by ABA application and so wilting of these plants was limited. Chlorophyll (a+b) and β-carotene contents were higher in ABA-treated plants, but the content of xanthophyll cycle pigments was not increased. However, the degree of xanthophyll cycle pigments deepoxidation was decreased what also suggested less stress in ABA-treated plants. No dramatic changes in most chlorophyll a fluorescence parameters after ex vitro transfer suggested that the plants did not suffer from restriction of electron transport or photosystem damage.  相似文献   

16.
Manganese toxicity, which involves a broad array of physiological responses, has been identified as an important factor limiting plant growth on acid soils. In the experiments reported here, we examined the toxic effects of Mn on chlorophyll content, photosynthesis and respiration in two cultivars (Norquay and Columbus) of Triticum aestivum (wheat) which differ in tolerance of Mn. When grown over a range of concentrations of Mn (0–1 000 μ M ), the Mn-tolerant cultivar maintained higher rates of photosynthesis and respiration, and higher concentrations of chlorophyll a and chlorophyll b , than did the Mn-sensitive cultivar, despite greater accumulations of Mn in leaf tissues. After 5 days growth with 1 000 μ M Mn in solution, the photosynthetic rate fell to 25% of control in the sensitive cultivar and to only 75% of control in the tolerant cultivar. The concentration of chlorophyll a fell to 50% of control in the sensitive cultivar, but did not differ from control in the tolerant cultivar. Greater effects were seen on concentrations of chlorophyll b . which fell to 35% and 55% of control in the sensitive and tolerant cultivars, respectively. Rates of photosynthesis decreased in both cultivars as concentrations of chlorophyll decreased; however, the photosynthetic rate per unit chlorophyll remained constant or increased in the tolerant cultivar and decreased in the sensitive cultivar as concentrations of Mn in solution increased. Thus, in the sensitive cv. Columbus, Mn seemed to have a toxic effect on both chlorophyll content and photosynthesis per unit chlorophyll. In the tolerant cv. Norquay, the only clear effect of Mn was a reduction in chlorophyll content, although direct inhibition of photosynthesis could not be discounted.  相似文献   

17.
The effect of different O3 concentrations on two lettuce (Lactuca sativa L.) varieties (Valladolid and Morella) was investigated through chlorophyll (Chl) a fluorescence parameters, photosynthetic pigments (Chl a, b and total carotenoid), lipid peroxidation and crop yield. Ozone fumigation caused: a decrease in maximum quantum yield of photosystem II (PSII) photochemistry (Fv/Fm) in mature leaves, a reduction in the non-cyclic electron flow (phiPSII) and a lower capacity to reoxidize the QA pool (qP). These reductions were significant in the Valladolid var. but not in the Morella var. A significant decrease in Chl a, b and in the total carotenoids was observed in the Valladolid var. but not in the Morella var. mainly under O3 fumigation conditions. We observed that the NPQ parameter did not increase in parallel to the qP reduction seen in the Valladolid var. O3 fumigation with respect to air charcoal filtered air conditions. This fact could be associated with a lower capacity for dissipation of non-radiative excess energy and it may be closely correlated with significant decreases in photosynthetic pigment concentration. A decrease in NPQ from air ozone-free to ozone fumigation in the Morella var. can be explained by the need to maintain the photochemical quenching under O3 stress. It may also be associated with a slight increase in photosynthetic pigments. The differences between the two varieties may indicate that the Valladolid var. is more susceptible to O3 damage.  相似文献   

18.
The mechanisms of photosynthetic adaptation to different combinations of temperature and irradiance during growth, and especially the consequences of exposure to high light (2000 micro mol m(-2) s(-1) PPFD) for 5 min, simulating natural sunflecks, was studied in bean plants (Phaseolus vulgaris L.). A protocol using only short (3 min) dark pre-treatment was introduced to maximize the amount of replication possible in studies of chlorophyll fluorescence. High light at low temperature (10 degrees C) significantly down-regulated photosynthetic electron transport capacity [as measured by the efficiency of photosystem II (PSII)], with the protective acclimation allowing the simulated sunflecks to be used more effectively for photosynthesis by plants grown in low light. The greater energy dissipation by thermal processes (lower F(v)'/F(m)' ratio) at low temperature was related to increased xanthophyll de-epoxidation and to the fact that photosynthetic carbon fixation was more limiting at low than at high temperatures. A key objective was to investigate the role of photorespiration in acclimation to irradiance and temperature by comparing the effect of normal (21 kPa) and low (1.5 kPa) O(2) concentrations. Low [O(2)] decreased F(v)/F(m) and the efficiency of PSII (Phi(PSII)), related to greater PSII down-regulation in cold pre-treated plants, but minimized further inhibition by the mild 'sunfleck' treatment used. Results support the hypothesis that photorespiration provides a 'safety-valve' for excess energy.  相似文献   

19.
揭示玉米(Zea mays)和花生(Arachis hypogaea)间作提高花生对弱光利用能力的光合特点及磷(P)肥效应, 对阐明间作花生适应弱光的光合机理和提高间作花生的产量具有重要意义。该试验于2011-2012年在河南科技大学试验农场分析了间作花生功能叶的叶绿素含量与构成、光响应曲线和CO2响应曲线特点和荧光参数。结果表明: 与单作花生相比, 施P与不施P条件下玉米和花生间作显著(p < 0.01)提高了花生功能叶的叶绿素b含量, 降低了叶绿素a/b, 显著提高了光系统II最大光化学效率(Fv/Fm)、实际光化学效率(ΦPSII)、光化学猝灭系数(qP)、表观量子效率(AQY)和弱光时的光合速率, 显著降低了气孔导度、二磷酸核酮糖羧化酶羧化速率(Vcmax)、电子传递速率(Jmax)和磷酸丙糖利用速率(TPU); 与不施P相比, 施P有利于提高间作花生功能叶的叶绿素含量, 显著提高了ΦPSIIqPVcmaxJmaxTPU, 说明间作花生通过提高功能叶的叶绿素b含量, 改变叶绿素构成, 提高了光系统II的Fv/FmΦPSIIqP, 增强了对光能的捕获和转化能力, 提高了对弱光的利用能力, 而并非提高了对CO2的羧化固定能力; 施P有利于提高间作花生对弱光的利用能力和产量, 土地当量比提高了6.2%-9.3%。  相似文献   

20.
Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号