首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weissman , Gerard S. (Rutgers U., Camden, N. J.) Influence of ammonium and nitrate on the protein- and amino acids in shoots of wheat seedlings. Amer. Jour. Bot. 46(5): 339–346. 1959.—Total and protein nitrogen per shoot of wheat seedlings grown with endosperm attached increased at a steady rate during a 96-hr. growth period, and protein nitrogen, as a percentage of total nitrogen, remained constant at about 53%. Total and protein nitrogen concentration was greatest for 24-hr. shoots and declined as the shoots became older. Total and protein nitrogen were determined in 96-hr. shoots of seedlings grown with endosperm attached but also supplied with ammonium, nitrate, or both in the culture solution. Total nitrogen was greatest in shoots supplied with ammonium, but only 38% was in the form of protein. Maximum protein synthesis occurred in shoots grown in both ammonium and nitrate and protein nitrogen as a percentage of total nitrogen approximated that achieved in shoots lacking nitrogen in the culture solution. The protein amino acid composition of 48-, 72-, and 96-hr. shoots was very similar but differed from 24-hr. shoots which contained higher percentages of arginine and lysine and lower percentages of alanine and threonine. This may be correlated with the higher proportion of meristematic cells in 24-hr. shoots. The protein amino acids in shoots grown with ammonium resembled that of shoots lacking nitrogen in the culture solution, but nitrate shoot protein contained a higher percentage of arginine and a lower percentage of lysine. Nitrate may stimulate the formation of enzymes, possibly of a nitrate-reducing system, with high arginine- low lysine content. Free asparagine and glutamine were both at a maximum in ammonium shoots and at a minimum in nitrate shoots, but asparagine predominated in shoots supplied with ammonium while glutamine was greatest in nitrate shoots. Aspartic acid, asparagine, and glutamine appeared to have ammonia-storage functions, but glutamic acid appeared to be primarily concerned with protein synthesis. Amino acid accumulation was greatest in shoots supplied with both ammonium and nitrate. Protein synthesis in these appeared to be limited by inadequate concentrations of glutamic acid and proline. A hypothesis is proposed in explanation of the high glutamic acid concentration in shoots provided with ammonium and nitrate.  相似文献   

2.
Summary The effects of organic and inorganic nitrogen combinations on cell growth, solvent production and nitrogen utilization by Clostridium acetobutylicum ATCC 824 was studied in batch fermentations. Fermentations in media with 10 mM glutamic acid, as the organic nitrogen source, and 0 mM to 10 mM ammonium chloride, as the inorganic nitrogen source had a solvent yield of 0.8 to 1.08 mmol solvent/mmol glucose used, with a slow fermentation rate (2 mmol solvent/l h-1). When media contained 20 mM or 30 mM glutamic acid as well as 2.5 to 7.5 mM ammonium chloride the fermentation rate increased (5.5 mmol/l h-1) while the solvent yield remained constant (0.86 to 0.96 mmol solvent/mmol glucose used). Total solvent production was higher in media containing 20 mM or 30 mM glutamic acid than with 10 mM glutamic acid.  相似文献   

3.
A study has been made of the distribution and properties of the free amino acid pool in yeast. The depletion of the pool was found to depend upon the energy source used, conditions of growth, and the nature of the exogenous nitrogen source. Pool levels could be restored either by an internal replenishment mechanism or by various nitrogen sources. In the absence of internal replenishment a strong positive correlation was established between the ability of nitrogen compounds to support free glutamic add synthesis and enzyme-synthesizing capacity. Amino acid assimilation by nitrogen-starved yeast was studied and compared with that in other organisms. The significance of these results for the problem of enzyme and protein synthesis in yeast is discussed.  相似文献   

4.
To prevent the loss of raw material in ethanol production by anaerobic yeast cultures, glycerol formation has to be reduced. In theory, this may be done by providing the yeast with amino acids, since the de novo cell synthesis of amino acids from glucose and ammonia gives rise to a surplus of NADH, which has to be reoxidized by the formation of glycerol. An industrial strain of Saccharomyces cerevisiae was cultivated in batch cultures with different nitrogen sources, i.e., ammonium salt, glutamic acid, and a mixture of amino acids, with 20 g of glucose per liter as the carbon and energy source. The effects of the nitrogen source on metabolite formation, growth, and cell composition were measured. The glycerol yields obtained with glutamic acid (0.17 mol/mol of glucose) or with the mixture of amino acids (0.10 mol/mol) as a nitrogen source were clearly lower than those for ammonium-grown cultures (0.21 mol/mol). In addition, the ethanol yield increased for growth on both glutamic acid (by 9%) and the mixture of amino acids (by 14%). Glutamic acid has a large influence on the formation of products; the production of, for example, alpha-ketoglutaric acid, succinic acid, and acetic acid, increased compared with their production with the other nitrogen sources. Cultures grown on amino acids have a higher specific growth rate (0.52 h-1) than cultures of both ammonium-grown (0.45 h-1) and glutamic acid-grown (0.33 h-1) cells. Although the product yields differed, similar compositions of the cells were attained. The NADH produced in the amino acid, RNA, and extracellular metabolite syntheses was calculated together with the corresponding glycerol formation. The lower-range values of the theoretically calculated yields of glycerol were in good agreement with the experimental yields, which may indicate that the regulation of metabolism succeeds in the most efficient balancing of the redox potential.  相似文献   

5.
The amino acid composition of seeds and 10-day seedlings of mung bean (Phaseolus aureus L.) as well as that of proteins of Ph. aureus seedlings was measured. The seedlings were grown under different conditions of nitrogen nutrition in the light and in the dark. Ph. aureus seeds showed a high content of some essential amino acids. As compared with seeds, the seedlings had higher concentrations of aspartic acid and isoleucine and lower concentrations of glutamic acid, lysine and histidine. Proteins of Ph. aureus seedlings showed greater amounts of isoleucine, phenylalanine, threonine, lysine and lower quantities of glutamic acid. Methionine and cystine were limiting amino acids.  相似文献   

6.
Uptake of labeled amino acids occurred at –4 C to 50 C accompanied by amino acid pool formation and protein synthesis. Maximum assimilation rates of both amino acids occurred at a temperature at which growth of this yeast was inhibited. Over a wide range of temperature the organism took up more exogenous lysine than glutamic acid, even though glutamic acid was present in the cellular protein in greater quantities. At 25 C the uptake and incorporation rates of glutamic acid was significantly higher than at 3 C; however, the size of the glutamic acid pools, at these two temperatures, appeared to be equal and independent of temperature.  相似文献   

7.
XCCNAU-92生产黄原胶的工业发酵培养基成份   总被引:1,自引:0,他引:1  
XCCNAU-92生产黄原胶的工业发酵培养基成份是:蔗糖、玉米淀粉、氮源X、鱼粉、CaCO3、MgSO4、K2HPO4。适宜的C/N是:蔗糖(玉米淀粉)/氮源X=60.0/1.0,蔗糖(玉米淀粉)/鱼粉=60.0/10.0。CaCO3、MgSO4对XCCNAU-92合成黄原胶有明显促进作用,K2HPO4在发酵过程中使pH保持稳定,Mn2+、Zn2+、Fe3+、柠檬酸和谷氨酸对生产黄原胶无促进作用。  相似文献   

8.
SYNOPSIS. Euglena gracilis (bacillaris variety, strain SM-L1, streptomycin-bleached) used the following amino adds (10−3 M) as sole nitrogen source for growth on a defined medium: glycine, alanine, valine, leucine, isoleucine, serine, threonine, and glutamic acid. Aspartic acid was used at 10−2 M. Glutamine and asparagine were used at 10−3 M and were better N sources than their parent dicarboxylic amino acids. Not used as sole N source for growth were phenylalanine, tyrosine, tryptophan, cysteine, cystine, methionine, proline, hydroxyproline, histidine, arginine, lysine, and taurine. Astasia longa (Jahn strain) was more restricted than Euglena and used only asparagine and glutamine as N sources for growth.  相似文献   

9.
Wild-type strains of Saccharomycopsis lipolytica are able to use lysine as a carbon or a nitrogen source, but not as a unique source for both. Mutants were selected that could not use lysine either as a nitrogen or as a carbon source. Some of them, however, utilized N-6-acetyllysine or 5-aminovaleric acid. Many of the mutants appeared to be blocked in both utilizations, suggesting a unique pathway for lysine degradation (either as a carbon or as a nitrogen source). Genetic characterization of these mutants was achieved by complementation and recombination tests.  相似文献   

10.
Glucose-limited chemostat cultures of Candida utilis were cultivated at various pH levels (3.0-7.5), temperatures (15-37.5 degrees C), dilution rates (0.006-0.42 hr-1), and with one of two nitrogen sources (NH+4 or NO-3). Enterobacter aerogenes was also cultivated in the chemostat under nitrogen and phosphorus limitations. The amino acid profile of total cell protein is expressed as the content of each amino acid relative to the sum of all amino acids recovered ater acid hydrolysis. Cell residues obtained after hot trichloracetic acid extraction display small variations in amino acid profile. Some of these variations correlate with the growth rate at satisfactory levels of statistical significance. In C. utilis, the correlations cover increased levels of lysine, arginine, and leucine and decreased levels of serine and glutamic acid with increased "reduced dilution rate" (D/Dc). In E. aerogenes, increased levels of lysine and arginine and a decreased level of glutamic acid correlate with increased dilution rate. The directions of most of these correlations and the extents of those pertaining to lysine and arginine are consistent with the change predicted to occur simultaneously in the relative level of the ribosomal protein group.  相似文献   

11.
Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen.  相似文献   

12.
arg-13为精氨酸代谢途径里的一个渗露型突变。经研究发展了该突变的严格选择方法。该法省略了基本培养基的氮源而加上相似浓度的鸟氨酸与赖氨酸。此法在严紧山梨糖/葡萄糖条件下能强烈抑制arg-13突变株生长,但在斑点试验条件下允许arg-13突变株生长。由于鸟氨酸是通过线粒体合成和由细胞质至线粒体的过膜转运而积累,我们构建了arg-4,arg-13双突变株,其中arg-4阻断了线粒体鸟氨酸合成。在斑点试验条件下,arg-4,arg-13双突变株能利用鸟氨酸作为唯一氮源与精氨酸合成前体,但受赖氨酸与刀豆氨酸强烈抑制。具正常鸟氨酸转运功能的arg-4单突变株在鸟氨酸基本培养基的生长只受微弱的赖氨酸抑制。已有报道arg-13为嘧啶合成代谢途径里pyr-3(CPSACT~ )突变的部分抑制基因,序列分析表明arg-13编码一线粒体转运酶。本文数据提示arg-13在线粒体鸟氨酸过膜转运过程中起主要作用。arg-13突变株仍携带一定的线粒体鸟氨酸转运功能并受碱性氨基酸赖氨酸、刀豆氨酸抑制,可能为另一线粒体碱性氨基酸转运酶介导。  相似文献   

13.
arg—13可能参与鸟氨酸在粗糙脉孢霉线粒体的过膜转运   总被引:2,自引:0,他引:2  
arg-13 is a leaky mutation involved in arginine metabolism. A tight selection is developed using similar amount of lysine and ornithine replacing other nitrogen source in minimal medium. This selection strongly inhibits the growth of arg-13 under stringent sorbose/glucose condition but allows arg-13 to grow under spot test conditions. As ornithine is build up through mitochondrial ornithine biosynthesis and transport from cytoplasm to mitochondria, arg-13 is combined in genetic crosses with arg-4 which blocks mitochondrial ornithine synthesis. Under spot test conditions, double mutant arg-4, arg-13 is able to use ornithine as sole nitrogen source and arginine biosynthesis precursor, but subject to strong lysine and canavanine inhibition. While the usage of ornithine in arg-4 single mutant with intact ornithine transport function is only slightly inhibited by lysine. All available data suggest arg-13 plays a major role in mitochondrial ornithine transport. The strain carrying the mutation at the arg-13 locus allows inefficient mitochondrial ornithine trafficking, possibly mediated by another distinct basic amino acid carrier.  相似文献   

14.
An analog of the C-terminal tricosapeptide of secretin, with aspartic acid replacing glutamic acid in position 9 and lysine substituted for arginine in position 21, was prepared. The synthesis was carried out in solution by stepwise chain lengthening with the application of the in situ technique. The ord-cd spectra of this new analog closely resemble the spectra of the tricosapeptide with the unaltered secretin sequence and of the analog in which only arginine-21 was replaced by lysine and of secretin itself. The incorporation of aspartic acid instead of glutamic acid-9 resulted in an N-terminal sequence that has a consïderably reduced probability of assuming a helical conformation. The observation that the helix content remained unchanged adds support to a model of secretin in which the helical stretch is near the C-terminus. The role of an acidic residue in position 9 is also discussed.  相似文献   

15.
16.
The complete amino acid analysis of the whole glutelin preparation from rice endosperm was performed. The recoveries were 101.59% for amino acid residues and 101.68% for nitrogen, and the standard deviations for four determinations on the 22 and 70 hr hydrolyzates were very small. The features of the amino acid composition of the protein were as follows; (1) the high contents of dicarboxylic amino acids, particularly glutamic acid, (2) about 60% of these dicarboxylic amino acids was in the amide form, and (3) the significantly low contents of tryptophan, methionine and half cystine. The amino acid analyses of the two kinds of the subunits of glutelin, the neutral major one and the basic minor one, were also carried out. There were some significant differences between the two subunits, for instance, in the contents of glutamic acid, tryptophan, glycine, half cystine, methionine and lysine. However, the composition of whole glutelin seemed to be settled predominantly by that of the major subunit.  相似文献   

17.
高华  张艳丽  刘克为 《生物磁学》2009,(14):2637-2640,2605
目的:以枯草芽孢杆菌纳豆亚种为出发菌株,考察不同碳氮源及NaCl浓度、谷氨酸、种龄、接种量对微生物发酵产1-聚谷氨酸的影响,以提高γ-聚谷氨酸的产量。方法:该菌菌种活化后,接入种子培养基,于37℃、200r/min震荡培养18h,然后按2%接种量接入不同发酵培养基进行发酵培养。γ-聚谷氨酸分离纯化后,根据其产量筛选最适发酵培养基组成及发酵条件,并对产物进行分析测定。结果:①最佳碳氮源分别为葡萄糖、蛋白胨,NaCl浓度为30g/L、种龄15h、接种量3%,且需在培养基中添加谷氨酸。②该菌株在最适条件下发酵56h时,γ-聚谷氨酸产量达32.7g/L,凝胶渗透色谱分析其相对分子质量为426kDa,呈多分子质量聚集体形式。③γ-聚谷氨酸的合成与菌体生长并非完全同步。结论:γ-聚谷氨酸作为一种天然的、可生物降解的、对环境和人体无害的多聚物,可由微生物发酵合成,且在此适宜条件下产量较高。  相似文献   

18.
Saccharomyces cerevisiae baker's yeast mutants which produce 3 to 17 times as much lysine as the wild type, depending on the nitrogen source, have been selected. The baker's yeast strain was growth in a pH-regulated chemostat in minimal medium with proline as the nitrogen source, supplemented with increasing concentrations of the toxic analog of the lysine S-2-aminoethyl-L-cysteine (AEC). The lysine-overproducing mutants, which were isolated as AEC-resistant mutants, were also resistant to high external concentrations of lysine and to alpha-aminoadipate and seemed to be affected in the lysine biosynthetic pathway but not in the biosynthetic pathways of other amino acids. Lysine overproduction by one of the mutants seemed to be due to, at least, the loss of repression of the homocitrate synthase encoded by the LYS20 gene. The mutant grew slower than the wild type, and its dough-raising capacity was reduced in in vitro assays, probably due to the toxic effects of lysine accumulation or of an intermediate produced in the pathway. This mutant can be added as a food supplement to enrich the nutritive qualities of bakery products, and its resistance to alpha-aminoadipate, AEC, and lysine can be used as a dominant marker.  相似文献   

19.
The amino acid composition of the silage dry matter, silage nitrogen (g/16 gN) and the molar composition of the total measured amino acids (mM/100 mM) of five maize silages was measured and compared with results from the U.S.A.As the dry matter content of the silages increased, the total amino acid content decreased but was generally higher than values reported from America. As the grain content of the silages increased there was a decrease in lysine content which was reflected in an increased concentration of glutamic acid and proline. The lysine content of U.K. silages was higher than those from the U.S.A.  相似文献   

20.
Methods are described by which barley embryos may be excisedand grown under sterile conditions on a medium containing sucrose,minerals, and a complete mixture of amino-acids. Growth underthese conditions was comparable with that of intact seedlingsand the uptake of sugar and amino-acid could be studied withoutdisturbing the metabolic steady state. Purified preparationsof the embryo proteins have been made and the constituent amino-acidsseparated. 14C labelling in these amino-acids was determinedby a new gas-scintillation method. In an isotopic competitionexperiment embryos were grown in 14C-sucrose with nitrate oran amino-acid mixture as nitrogen source. The presence of exogenousamino-acids suppressed the incorporation of carbon from carbohydrateinto amino-acid residues of the embryo protein. The degree ofsuppression varied, being undetectable for glutamic acid butalmost complete for lysine and leucine; it appeared to be relatedto the length of the synthetic pathway from carbohydrate tothe amino-acid. The evidence suggested that amino-acids areprotein precursors, and this conclusion was confirmed in furtherexperiments in which 14C-aspartic acid, -glutamine, -proline,-leucine, or -lysine were supplied singly in a complete mixtureof amino-acids. The 14C was found predominantly in the amino-acidresidue of protein corresponding to the 14C-amino-acid supplied,with smaller amounts in other amino-acids of the same or relatedfamilies. Aspartic acid and glutamine yielded appreciable quantitiesof respiratory carbon dioxide, although the contribution wassmall compared to that of sucrose. Little carbon was lost ascarbon dioxide from leucine or lysine. The results are discussedin relation to the role of amino-acids in protein synthesis,and to the existence of feedback control in the amino-acid metabolismof higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号