共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of proteins that interact with a protein of interest: Applications of the yeast two-hybrid system 总被引:23,自引:0,他引:23
Gietz R. Daniel Triggs-Raine Barbara Robbins Anne Graham Kevin C. Woods Robin A. 《Molecular and cellular biochemistry》1997,172(1-2):67-79
The yeast two-hybrid system is a molecular genetic test for protein interaction. Here we describe a step by step procedure to screen for proteins that interact with a protein of interest using the two-hybrid system. This process includes, construction and testing of the bait plasmid, screening a plasmid library for interacting fusion proteins, elimination of false positives and deletion analysis of true positives. This procedure is designed to allow investigators to identify proteins and their encoding cDNAs that have a biologically significant interaction with your protein of interest. 相似文献
2.
3.
Selection of DNA binding sites by regulatory proteins: the LexA protein and the arginine repressor use different strategies for functional specificity. 总被引:12,自引:0,他引:12 下载免费PDF全文
O G Berg 《Nucleic acids research》1988,16(11):5089-5105
The DNA sequences in the operator sites of the arginine regulon and of the SOS regulon have been subject to a statistical analysis. A quantitative correlation is found between the statistics of sequence choice and the activity at individual operator sites in both systems, as expected from theoretical considerations [Berg & von Hippel, J.Mol.Biol. (1987) 193, 723-750]. Based on these correlations it is possible to predict the effect of various sequence mutations. There is a significant difference in the slopes of the correlation lines between sequence and activity for the two systems. From this difference it can be expected that individual point mutations in the ARG boxes will have a much smaller effect on activity than similar changes in the SOS boxes. This difference may be related to a strong cooperative activity at tandem ARG boxes while the binding at SOS boxes appears to be mostly noncooperative. 相似文献
4.
The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum 总被引:26,自引:0,他引:26 下载免费PDF全文
Self-incompatibility S-locus-encoded F-box (SLF) proteins have been identified in Antirrhinum and several Prunus species. Although they appear to play an important role in self-incompatible reaction, functional evidence is lacking. Here, we provide several lines of evidence directly implicating a role of AhSLF-S(2) in self-incompatibility in Antirrhinum. First, a nonallelic physical interaction between AhSLF-S(2) and S-RNases was demonstrated by both coimmunoprecipitation and yeast two-hybrid assays. Second, AhSLF-S(2) interacts with ASK1- and CULLIN1-like proteins in Antirrhinum, and together, they likely form an Skp1/Cullin or CDC53/F-box (SCF) complex. Third, compatible pollination was specifically blocked after the treatment of the proteasomal inhibitors MG115 and MG132, but they had little effect on incompatible pollination both in vitro and in vivo, indicating that the ubiquitin/26S proteasome activity is involved in compatible pollination. Fourth, the ubiquitination level of style proteins was increased substantially after compatible pollination compared with incompatible pollination, and coimmunoprecipitation revealed that S-RNases were ubiquitinated after incubating pollen proteins with compatible but not with incompatible style proteins, suggesting that non-self S-RNases are possibly degraded by the ubiquitin/26S proteasome pathway. Fifth, the S-RNase level appeared to be reduced after 36 h of compatible pollination. Taken together, these results show that AhSLF-S(2) interacts with S-RNases likely through a proposed SCF(AhSLF-S2) complex that targets S-RNase destruction during compatible rather than incompatible pollination, thus providing a biochemical basis for the inhibition of pollen tube growth as observed in self-incompatible response in Antirrhinum. 相似文献
5.
L. Xirong L. Rui Y. Xiaoli H. Qiuyan T. Bikui Z. Sibo Z. Naishuo 《Biochemistry. Biokhimii?a》2014,79(2):111-123
In this work we explored whether DNA methyltransferase 3a (Dnmt3a) targeted to the HBV X promoter (XP) causes epigenetic suppression of hepatitis B virus (HBV). The C-terminus of Dnmt3a (Dnmt3aC) was fused to a six-zinc-finger peptide specific to XP to form a fused DNA methyltransferase (XPDnmt3aC). The binding and methyl-modifying specificity of XPDnmt3aC were verified with an electrophoretic mobility shift assay and methylation-specific PCR, respectively. XP activity and HBV expression were clearly downregulated in HepG2 cells transfected with plasmid pXPDnmt3aC. The injection of XPDnmt3aC into HBV transgenic (TgHBV) mice also showed significant inhibition, leading to low serum HBV surface protein (HBsAg) levels and a reduced viral load. Thus, XPDnmt3aC specifically silenced HBV via site-selective DNA methylation delivered by zinc-finger peptides. This study establishes the foundation of an epigenetic way of controlling HBV-related diseases. 相似文献
6.
Baladrón V Ruiz-Hidalgo MJ Bonvini E Gubina E Notario V Laborda J 《Biochemical and biophysical research communications》2002,291(2):193-204
Levels of dlk, an EGF-like homeotic protein, are critical for several differentiation processes. Because growth and differentiation are, in general, exclusive of each other, and increasing evidence indicates that Dlk1 expression changes in tumorigenic processes, we studied whether dlk could also affect cell growth. We found that, in response to glucocorticoids, Balb/c 3T3 cells with diminished levels of dlk expression develop foci-like cells that have lost contact inhibition, display altered morphology, and grow faster than control cell lines. Balb/c 3T3 cells spontaneously growing more rapidly are also dlk-negative cells. Moreover, screening by the yeast two-hybrid system, using Dlk1 constructs as baits, resulted in the isolation of GAS1 and acrogranin cDNAs. Interestingly, these proteins are cysteine-rich molecules involved in the control of cell growth. Taken together, these observations suggest that dlk may participate in a network of interactions controlling how the cells respond to growth or differentiation signals. 相似文献
7.
The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation 总被引:13,自引:0,他引:13
Merkle D Douglas P Moorhead GB Leonenko Z Yu Y Cramb D Bazett-Jones DP Lees-Miller SP 《Biochemistry》2002,41(42):12706-12714
DNA double-strand breaks are a serious threat to genome stability and cell viability. One of the major pathways for the repair of DNA double-strand breaks in human cells is nonhomologous end-joining. Biochemical and genetic studies have shown that the DNA-dependent protein kinase (DNA-PK), XRCC4, DNA ligase IV, and Artemis are essential components of the nonhomologous end-joining pathway. DNA-PK is composed of a large catalytic subunit, DNA-PKcs, and a heterodimer of Ku70 and Ku80 subunits. Current models predict that the Ku heterodimer binds to ends of double-stranded DNA, then recruits DNA-PKcs to form the active protein kinase complex. XRCC4 and DNA ligase IV are subsequently required for ligation of the DNA ends. Magnesium-ATP and the protein kinase activity of DNA-PKcs are essential for DNA double-strand break repair. However, little is known about the physiological targets of DNA-PK. We have previously shown that DNA-PKcs and Ku undergo autophosphorylation, and that this correlates with loss of protein kinase activity. Here we show, using electron spectroscopic imaging, that DNA-PKcs and Ku interact with multiple DNA molecules to form large protein-DNA complexes that converge at the base of multiple DNA loops. The number of large protein complexes and the amount of DNA associated with them were dramatically reduced under conditions that promote phosphorylation of DNA-PK. Moreover, treatment of autophosphorylated DNA-PK with the protein phosphatase 1 catalytic subunit restored complex formation. We propose that autophosphorylation of DNA-PK plays an important regulatory role in DNA double-strand break repair by regulating the assembly and disassembly of the DNA-PK-DNA complex. 相似文献
8.
9.
We isolated and characterized a new gene related to the control of cell division regulation in Escherichia coli . At 30°C, the dnaAcos mutant causes over-replication of the chromosome, and colony formation is inhibited. We found that, at this temperature, the dnaAcos cells form filaments; therefore, septum formation is inhibited. This inhibition was independent of SfiA, an inhibitor of the septum-forming protein, FtsZ. To identify factors involved in this pathway of inhibition, we isolated seven multicopy suppressors for the cold-sensitive phenotype of the dnaAcos mutant. One of these proved to be a previously unknown gene, which we named cedA . This gene encoded a 12 kDa protein and resided at 38.9 min on the E. coli genome map. A multicopy supply of the cedA gene to the dnaAcos cells did not repress over-replication of the chromosome but did stimulate cell division of the host, the result being growth of cells with an abnormally elevated chromosomal copy number. Therefore, the expression level of the cedA gene seems to be important for inhibiting cell division of the dnaAcos mutant at 30°C. We propose that over-replication of the chromosome activates a pathway for inhibiting cell division and that the cedA gene modulates this division control. In the dnaA + background, cedA also seems to affect cell division. 相似文献
10.
11.
12.
Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system 总被引:57,自引:0,他引:57
Y Takai A Kishimoto U Kikkawa T Mori Y Nishizuka 《Biochemical and biophysical research communications》1979,91(4):1218-1224
A small quantity of unsaturated diacylglycerol (DG) sharply decreased the Ca2+ and phospholipid concentrations needed for full activation of a Ca2+-activated, phospholipid-dependent multifunctional protein kinase described earlier (Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T. and Nishizuka, Y. (1979). 3692–3695). In the presence of unsaturated DG and micromolar order of Ca2+, phosphatidylserine (PS) was most relevant with the capacity to activate the enzyme, whereas phosphatidylethanolamine and phosphatidylinositol (PI) were far less effective. Phosphatidylcholine was practically inactive. It is possible, therefore, that unsaturated DG, which may be derived from PI turnover provoked by various extracellular stimulators, acts as a messenger for activating the enzyme, and that Ca2+ and various phospholipids such as PI and PS seem to play a role cooperatively in this unique receptor mechanism. 相似文献
13.
Gritsenko OM Koudan EV Mikhailov SN Ermolinsky BS Van Aerschot A Herdewijn P Gromova ES 《Nucleosides, nucleotides & nucleic acids》2002,21(11-12):753-764
Affinity modification of EcoRII DNA methyltransferase (M x EcoRII) by DNA duplexes containing oxidized 2'-O-beta-D-ribofuranosylcytidine (Crib*) or 1-(beta-D-galactopyranosyl)thymine (Tgal*) residues was performed. Cross-linking yields do not change irrespective of whether active Crib* replaces an outer or an inner (target) deoxycytidine within the EcoRII recognition site. Chemical hydrolysis of M x EcoRII in the covalent cross-linked complex with the Tgal*-substituted DNA indicates the region Gly268-Met391 of the methylase that is likely to interact with the DNA sugar-phosphate backbone. Both specific and non-specific DNA interact with the same M x EcoRII region. Our results support the theoretically predicted DNA binding region of M x EcoRII. 相似文献
14.
15.
T Schmidt-D?rr P Oertel-Buchheit C Pernelle L Bracco M Schnarr M Granger-Schnarr 《Biochemistry》1991,30(40):9657-9664
16.
PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system 总被引:12,自引:0,他引:12 下载免费PDF全文
《The Journal of cell biology》1995,128(3):263-271
Protein kinase C (PKC) plays a central role in the control of proliferation and differentiation of a wide range of cell types by mediating the signal transduction response to hormones and growth factors. Upon activation by diacylglycerol, PKC translocates to different subcellular sites where it phosphorylates numerous proteins, most of which are unidentified. We used the yeast two-hybrid system to identify proteins that interact with activated PKC alpha. Using the catalytic region of PKC fused to the DNA binding domain of yeast GAL4 as "bait" to screen a mouse T cell cDNA library in which cDNA was fused to the GAL4 activation domain, we cloned several novel proteins that interact with C-kinase (PICKs). One of these proteins, designated PICK1, interacts specifically with the catalytic domain of PKC and is an efficient substrate for phosphorylation by PKC in vitro and in vivo. PICK1 is localized to the perinuclear region and is phosphorylated in response to PKC activation. PICK1 and other PICKs may play important roles in mediating the actions of PKC. 相似文献
17.
18.
19.