首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了探讨氧化鱼油对草鱼肠道黏膜损伤后, 参与抗氧化应激的基因通路及其通路基因表达活性的变化,以草鱼为试验对象, 灌喂氧化鱼油7d后, 采集肠道黏膜组织并提取总RNA, 采用RNA-seq方法, 进行了氧化鱼油组和正常鱼油组草鱼肠道黏膜基因注释、IPA基因通路分析和基因表达活性差异分析。结果显示, 组织切片观察发现氧化鱼油导致草鱼肠道黏膜出现严重的损伤; 肠道黏膜中具有较为完整的Keap1-Nrf2-ARE基因调控通路。肠道黏膜在受到氧化鱼油的氧化损伤作用后, 激活了细胞的抗氧化损伤保护机制, 使NRF2介导的氧化应激反应通路基因差异表达显著性地上调, 并导致了下游的GSH/GSTs通路基因差异表达显著性上调, 促进了GSH的生物合成和GSTs的抗氧化作用; 导致Keap1-Nrf2-ARE信号通路下游的热休克蛋白和泛素-蛋白酶体通路基因差异表达显著性上调, 清除受损伤蛋白质, 保护细胞结构完整性。研究表明, 上述三类抗氧化应激通路构成了对肠道黏膜损伤细胞、损伤蛋白质的降解系统和清除系统, 显示其对肠道黏膜组织和黏膜细胞的保护、修复发挥了重要的作用。  相似文献   

2.
了解中枢神经系统髓鞘损伤再生的调控机制对多种中枢神经系统脱髓鞘疾病的治疗有重要意义。近年来研究发现,中枢神经系统中小胶质细胞的不同极化形式在调控髓鞘损伤再生中起到重要作用。在一系列细胞内外信号分子的介导下,M1型小胶质细胞会分泌一些促炎因子而加重髓鞘的损伤,而M2型小胶质细胞一方面可分泌抗炎分子和吞噬损伤坏死细胞而抑制炎症反应,为髓鞘再生创造条件;另一方面还能分泌多种神经营养因子,促进髓鞘修复。此外,最近研究发现M2型小胶质细胞在一定程度上还能促进少突胶质前体细胞的成熟分化,进而促进了中枢神经系统髓鞘的再生。这些研究结果提示,促进小胶质细胞的M2型极化可能成为治疗脱髓鞘疾病的新途径。  相似文献   

3.
连环蛋白P120可在细胞连接处与E-钙黏蛋白结合形成连环蛋白-钙黏蛋白复合体,调控钙黏蛋白介导的细胞黏附作用;在胞质内可与Rho家族GTP酶相互作用调节细胞骨架的运动;在细胞核内可与核转录因子NF-κB和转录抑制因子Kaiso结合,影响炎性反应和细胞增殖.P120对细胞黏附、细胞动力、炎性反应和细胞增殖的影响使其与损伤修复和肿瘤的发生、发展密切相关.深入研究P120的作用及其相关机制对于进一步研究损伤后修复及肿瘤预防和治疗具有深远的意义.  相似文献   

4.
非侵入性激光照射可以诱导细胞和组织的光生物调节效应。光生物调节(PBM)应用广泛,特别是在抗微生物感染和改善炎症方面有着很好的效果。然而,研究发现,PBM对细菌和炎症有双向调节现象,抗菌-促菌和抑炎-促炎在不同的试验条件下会发生变化。近些年来,PBM的临床应用受到越来越多的关注,特别是在抗菌领域,因为它是一种无创的策略,禁忌症少。然而,由于双向调节效应,研究人员仍然对PBM的应用方式存疑,必须根据其临床应用进行光照波长、剂量等参数的修改。因此,本文总结了PBM对细菌的双向调节效应,分析了这种双向调节效应产生的影响因素及其分子机制。PBM对细菌的双向调节作用受光照波长、剂量、细菌类别及细菌状态的影响。更好地了解低强度激光治疗中双向剂量反应的程度能够探索PBM使用的最可靠机制,并最终使各种疾病患者的治疗标准化,这对于优化临床治疗是必要的。此外,研究人员对PBM双向调节机制的合理利用使其可以达到促进或抑制细菌生长的作用,这在微生物制造、菌群调节、改善和治疗疾病等领域有广阔的应用前景。  相似文献   

5.
间充质干细胞(mesenchymal stem cells, MSCs)是一类具有自我更新和多向分化潜能的成体干细胞.取决于局部微环境的刺激, MSCs可产生大量生物活性物质,具有造血支持、提供营养、激活内源性干/祖细胞、组织损伤修复、免疫调节、促进血管新生、抗细胞凋亡、抗氧化、抗纤维化以及归巢等多方面的作用.临床试验结果表明, MSCs在许多疾病治疗中都表现出很好的效果,特别是自身免疫性疾病、组织损伤性疾病和退行性疾病等.然而, MSCs在疾病治疗中的作用机制尚不明确,本文重点介绍了目前研究发现的MSCs作用机制,这些机制主要包括转分化和细胞融合、旁分泌作用、细胞与细胞接触依赖、胞外囊泡和线粒体转移以及表观遗传学调控等.此外,还讨论了能够增强MSCs临床治疗效果的方法.  相似文献   

6.
通过体外模拟糖尿病患者高血糖环境研究胎盘间充质干细胞(placenta mesenchymal stem cells, PMSCs)促进角质形成细胞的增殖和迁移能力,这对阐明PMSCs促进糖尿病足等皮肤创伤修复的作用具有重要意义。该研究分离培养人角质形成细胞(human keratinocytes, hKCs),添加50~100 mmol/L葡萄糖,建立高糖损伤模型。利用CCK-8检测损伤hKCs与PMSCs共培养前后的增殖情况,流式细胞术检测细凋亡胞数量,细胞划痕愈合实验检测细胞迁移速度,免疫荧光染色和Western blot检测细胞骨架蛋白波形蛋白(vimentin)的表达,以反映细胞的形态和运动能力。结果发现,原代hKCs为大小均一的铺路石样细胞,在模拟高血糖环境(50 mmol/L、100 mmol/L D-葡萄糖)时,细胞出现扁平、增大、增殖能力下降等衰老特点,角质形成细胞增殖率低,迁移区域稀疏。与对照组相比, PMSCs共培养组在高糖条件下hKCs生长速度快,增殖率高,凋亡率低,迁移覆盖面积较大,波形蛋白表达明显增强,形态发生间质样转变。以上结果说明, PMSCs不仅能够抑制高糖引起的人角质形成细胞凋亡,同时促进其增殖和迁移,为间充质干细胞促进皮肤创面愈合的基础与临床研究提供了新证据。  相似文献   

7.
适宜运动是防治心脏疾病的有效方式,其作用机制尚未完全阐明,安全有效的运动处方需要系统研究。运动可使正常心肌细胞发生生理性肥大与增殖以及多种细胞因子的分泌和干细胞的有效动员,促进心肌细胞增殖分化。成体心肌细胞增殖的来源包括存活的心肌细胞、心肌干/祖细胞以及外周的骨髓间充质干细胞等。干细胞的动员、趋化归巢并分化为心肌细胞是心肌损伤修复的细胞基础。本文从心肌细胞增殖潜力、心肌梗死(MI)的干细胞治疗和运动促进MI心肌细胞增殖等三个方面综述运动促进干细胞动员,诱导内源性心肌细胞再生对MI心肌修复和心功能改善的可能机制、存在问题及相关研究进展。  相似文献   

8.
低压低氧引起机体各组织器官的病理生理变化,其中氧化应激损伤是大多数疾病的病理生理基础。大量研究发现,低压低氧导致机体内抗氧化酶水平降低,而脂质过氧化终产物丙二醛水平升高,表明低压低氧加重机体的氧化应激损伤。本文描述急性低压低氧暴露以及间歇性低压低氧预处理对氧化-抗氧化系统的影响,并阐述世居高原人群的高原适应性,就不同类型低压低氧对机体氧化-抗氧化系统的影响作一综述。急性低压低氧不仅影响抗氧化酶活性,而且具有抑制抗细胞凋亡蛋白,促进缺氧细胞凋亡的作用,影响氧化-抗氧化系统的平衡。而间歇性慢性低压低氧预处理则对组织器官具有保护作用,为治疗心血管疾病提供了一条非药物治疗的可能途径。  相似文献   

9.
目的:探究雷奈酸锶(SR)在高糖诱导的成骨细胞损伤中的保护作用。方法:体外培养MC3T3-E1成骨细胞,用MTT法筛选出能够诱导成骨细胞活性显著降低的高糖浓度,以及能够促进成骨细胞活性的最优SR浓度,随后观察SR对高糖诱导的成骨细胞的作用效果。采用MTT法检测细胞增殖情况,流式细胞仪检测凋亡水平,PCR和ELISA分别检测骨形成相关基因表达和蛋白分泌水平。结果:0.50 mmol/L的SR能够显著增强高糖诱导的MC3T3-E1成骨细胞的增殖能力和细胞活性,降低细胞凋亡水平,改善细胞形态,并显著促进Runx2、OCN、COL-1、BMP-2、IGF-1等的表达。结论:SR能够通过增加成骨细胞活性、抑制成骨细胞凋亡、促进骨形成相关因子的表达和分泌,发挥对高糖诱导的成骨细胞损伤的保护作用,为SR发挥糖尿病骨质疏松的治疗作用提供了实验依据。  相似文献   

10.
Nrf2抗氧化的分子调控机制   总被引:2,自引:0,他引:2       下载免费PDF全文
Nrf2是调控细胞氧化应激反应的重要转录因子,同时也是维持细胞内氧化还原稳态的中枢调节者。Nrf2通过诱导调控一系列抗氧化蛋白的组成型和诱导型表达,可以减轻活性氧和亲电体引起的细胞损伤,使细胞处于稳定状态,维持机体氧化还原动态平衡。本研究为了从分子层面深入探讨剖析Nrf2发挥抗氧化功能的作用机制,通过查找阅读大量相关文献并进行整理归纳,最终从Nrf2的结构与激活、Nrf2抗氧化功能以及Nrf2抗氧化的分子调控机制三个方面进行了概述分析。其中在对Nrf2抗氧化的分子调控机制的探讨部分,既探析了对Nrf2起激活作用的相关调节因子的作用机制,又分析了Nrf2被激活后对其下游多种抗氧化因子及谷胱甘肽氧化还原系统的诱导调控机制,以期较深入了解Nrf2抵抗机体氧化应激损伤作用及其抗氧化分子调控机制。  相似文献   

11.
目的:观察红杉醇(Scq)对高糖诱导的人脐静脉内皮细胞(HUVECs)损伤的保护作用及机制。方法:原代培养HUVECs,红杉醇(0.1,1,10μmol/L)预处理1h后,30mmol/L葡萄糖诱导内皮细胞损伤。5-溴脱氧尿嘧啶核苷(BrdU)掺入法检测细胞增殖,流式细胞术检测细胞周期,2’7’-二乙酰二氯荧光素(DCFH-DA)免疫荧光法检测细胞内活性氧簇(R0s)水平,比色法检测细胞-氧化氮(NO)、丙二醛(MDA)及过氧化氢(H202)水平,real-timePCR和Westernblot检测细胞内皮型一氧化氮合酶(eNos)及NADPH氧化酶4(NOX4)mRNA和蛋白表达。结果:Seq预处理1h后能明显减轻高糖诱导的血管内皮细胞损伤,促进细胞增殖,降低胞内NOX4的表达及ROS、MDA及H202水平,上调eNOS的表达及NO水平。结论:Seq对高糖诱导的内皮细胞损伤具有一定的保护作用,其机制可能与其抗氧化、上调eNOS的表达有关。  相似文献   

12.
本文采用桦褐孔菌发酵液提取物(IOFE)对人肝癌细胞株HepG_2、人胃癌细胞株SGC7901、正常组织来源的人肝细胞HL-7702,进行体外细胞试验,结果表明,IOFE在低浓度处理条件下对HepG_2和SGC7901均有抑制作用,且对SGC7901抑制效果最好;在高浓度条件下对HepG_2和SGC7901的生长具有一定的促进作用;IOFE对氟尿嘧啶损伤后的HL-7702具有非常高的修复作用,随浓度的升高,修复作用逐渐增强,在高浓度3 000μg/ml处理条件下,修复率为303.01%。因此,IOFE对肿瘤细胞的作用表现可知提取物含有复杂的成分,这些成分具有抑制或促进细胞增殖的作用,随着浓度的升高促进作用的成分占优势,但对正常细胞,甚至化疗药物损伤后的细胞却有更好的促进作用。  相似文献   

13.
茶多糖是一种从茶叶中提取的酸性糖蛋白,具有良好的抗氧化活性。以自由基清除率为指标,分析皖西南地区夏秋茶多糖的抗氧化活性,基于H2O2和EDTA-Fe2+建立的外源性羟基自由基(·OH)损伤细胞模型和PMA诱导内源性羟基自由基损伤模型,进一步探讨茶多糖对自由基损伤的修复作用机制。结果表明,茶多糖具有良好的体外抗氧化活性,对DPPH·和·OH均具有较强的清除效果,EC50值分别为209.5和535.2μg·mL–1,最大清除效率与Vc相当。细胞增殖实验表明,外源性和内源性自由基氧化损伤模型中细胞存活率均随着茶多糖浓度的增加而升高,在茶多糖浓度为800μg·mL–1时细胞存活率分别高达87.41%和85.84%,且显著高于模型组(47.67%和48.03%)。在修复机制上,利用激光共聚焦显微镜显影细胞内活性氧(ROS)分布以及荧光强度,分析结果显示,与模型组相比,茶多糖对于细胞模型中外源和内源性ROS均具有明显的清除效果,与体外抗氧化实验结果一致。茶多糖在体外表...  相似文献   

14.
伴随着人口老龄化日益严重,骨质疏松症作为"悄无声息的流行病"逐渐引起人们的注意。氧化损伤和力学刺激是造成骨质疏松的两个主要原因。一方面氧化损伤可通过刺激FoxOs信号通路抑制成骨细胞分化,造成骨质疏松,另一方面机体在长期缺乏负荷力刺激时也会发生废用性骨丢失,二者之间存在着紧密的联系。Nrf2作为细胞应对氧化损伤的主要防御机制,可调控多种抗氧化蛋白酶转录,在氧化损伤所造成的骨质疏松中扮演着重要角色。本文综述了氧化损伤和微重力造成骨质疏松的机制以及Nrf2对抗氧化损伤的调节和对修复骨质发育的影响。  相似文献   

15.
心肌梗死以高发病率、高致死率的特点严重影响人类健康,并造成了极大的社会经济负担。促进心肌细胞增殖与再生是修复缺血导致的心脏损伤的关键。越来越多的研究表明,非编码RNAs参与调控心肌细胞的增殖与再生。该文总结了小RNAs(microRNAs,miRNAs)、长链非编码RNAs(long non-coding RNAs,lncRNAs)以及环状RNAs(circular RNAs,circRNAs)参与调控心肌细胞增殖与再生、修复损伤心脏及其相关的分子机制。此外,该文还展望了非编码RNAs促进心肌细胞增殖的潜在治疗作用以及心脏损伤后应用RNA治疗进行再生修复的前景。  相似文献   

16.
谷氧还蛋白1(Grx1)在体内具有广泛的抗氧化、抗凋亡作用,与氧化应激损伤导致的糖尿病和心肌病等多种疾病的发病机制密切相关. 研究表明,糖尿病心血管病与自噬调节异常密切相关,但糖尿病心血管病变时自噬水平如何调节才能够保护受损的心肌还尚未定论.为研究自噬在高糖诱导心肌细胞凋亡中的作用及其与Grx1的关系,以明确Grx1对高糖诱导的心肌细胞凋亡的抑制作用及相关机制,本研究以高糖诱导大鼠心肌细胞H9c2建立高糖损伤模型,采用氧化还原蛋白免疫印迹法检测蛋白质的氧化水平.免疫印迹检测活性caspase 3蛋白和自噬蛋白Beclin1和LC3以及抗凋亡蛋白Bcl 2的表达水平.研究发现,高糖可诱导蛋白质的氧化水平增加,而Grx1可拮抗高糖诱导的H9c2细胞中蛋白质的氧化.并且含血清的高糖(25和50 mmol/L)作用H9c2心肌细胞后,自噬蛋白Beclin 1表达水平在6~48 h显著上调.同时发现,活性caspase 3水平也呈时间依赖性表达上调,caspase 3和自噬蛋白表达水平的同趋势增加,说明升高的自噬水平与心肌细胞凋亡的调节有关.Grx1保护组的自噬蛋白及活性caspase 3表达水平均显著下调,Grx1抑制剂镉组可拮抗Grx1调节的自噬蛋白和凋亡蛋白水平,说明Grx 1通过抑制自噬及caspase 3水平抑制高糖诱导的心肌细胞凋亡.以上研究结果提示,通过提高Grx1/GSH抗氧化系统功能,调节氧化还原稳态,可以有效减少高糖诱导的心肌损伤,保护糖尿病心脏功能.  相似文献   

17.
叶片和细根是植物地上和地下部分中最敏感和活跃的部分,对森林生态系统的碳循环起着十分重要的作用。叶片和细根生理代谢特征及其相互关联的变化不仅反映植物在全球变暖背景下的生长状况,也揭示了植物面对环境胁迫的响应特征和适应策略,已经成为全球变化领域研究的热点和难点问题。国内外已开展了大量相关实验,从氧化损伤、抗氧化防御及代谢物的角度探讨了全球变暖条件下植物叶片和细根生理代谢的变化特征和响应机制。目前部分研究认为大气增温将促进叶片体内活性氧类物质的积累,对叶片产生氧化损伤,而对细根的损伤作用不明显,但也有部分研究认为细根受土壤增温的影响更大。总之,植物叶片和细根如何通过调整自身生理代谢特征和器官间的相互协作来响应气候变暖,以及这些响应的内在机制仍未得到充分研究。为此,该文系统综述了全球变暖背景下植物叶片和细根氧化损伤与抗氧化防御特征及其相互关联变化的研究进展,以期为植物对全球变暖的响应和适应机制研究提供参考,并认为今后还应开展以下几个方面的研究:(1)在种群和群落尺度上加强增温对植物氧化损伤与防御特征的研究;(2)结合地上地下物候特征研究增温对植物氧化损伤与防御特征的影响;(3)从更多植物生理指...  相似文献   

18.
耐辐射奇球菌被誉为“地球上最顽强的细菌”,能够在超高剂量的电离辐射、长时间干旱以及外太空等极端环境中存活,其电离辐射耐受性为人类细胞的数千倍.研究表明,这种惊人的能力来源于耐辐射奇球菌所具有的超强DNA损伤修复能力以及多种高效抗氧化系统的协同作用,使其能够将同一个基因组中同时产生的高达100个以上的DNA双链断裂在数十小时内进行高效而精准的修复.因此,耐辐射奇球菌成为目前研究DNA损伤修复的重要模式生物之一.本文主要阐述了耐辐射奇球菌的起源、细胞结构特征、DNA双链断裂修复机制以及抗氧化系统,展现了其对于极端环境的适应机制,并对其在放疗和基础生物学研究、抗逆调控元件的开发以及放射性核素富集等领域的应用前景进行了展望.  相似文献   

19.
5'-磷酸腺苷对小鼠脾细胞氧化应激损伤的保护作用   总被引:2,自引:0,他引:2  
目的研究5'-磷酸腺苷(5'-AMP)体外抗氧化和对体外氧化损伤脾细胞的损伤修复能力。方法用化学比色法测定5'-AMP体外清除二苯代苦味酰基自由基(DPPH自由基)的能力;建立过氧化氢(H2O2)氧化损伤体外培养小鼠脾细胞模型,用MTT法检测5'-AMP修复受损伤脾细胞的作用,并分析其对细胞抗氧化体系及抗氧化能力的影响。结果5'-AMP具有剂量依赖性的体外抗氧化和清除活性氧能力,添加0·5mmol/L、1mmol/L、5mmol/L和10mmol/L5'-AMP均能显著修复H2O2诱导的脾细胞氧化损伤(P<0·05),总抗氧化能力和抗氧化酶类活力(P<0·01),5'-AMP添加量大于1mmol/L时,可显著降低丙二醛(MDA)含量(P<0·01)。其细胞培养液的氧自由基(ROS)水平逐渐降低,5'-AMP添加量为10mmol/L时,ROS水平接近对照组水平。结论5'-磷酸腺苷能显著修复氧化损伤,具有显著的抗氧化作用。  相似文献   

20.
【目的】从基因组水平探讨生物冶金微生物——喜温嗜酸硫杆菌(Acidithiobacillus caldus)的活性氧类物质(Reactive oxygen species,ROS)防护机制。【方法】采用罗氏454 GS FLX测序平台对喜温嗜酸硫杆菌SM-1进行全基因组测序,利用NCBI非冗余蛋白数据库、Uniport蛋白数据库对全基因组序列进行功能注释,并采用基因组百科全书数据库(KEGG)进行基因组代谢途径重构,通过比较基因组学方法分析SM-1基因组中参与ROS防护相关的基因及可能的分子机制。【结果】SM-1细胞内的酶促抗氧化系统可用于清除细胞内产生的ROS物质,而非酶促抗氧化系统可用于维持细胞内的还原性内环境;细胞内的DNA损伤修复系统可用于修复DNA的氧化损伤从而保持个体遗传物质的稳定性。此外,SM-1基因组中大量的转座元件可能会增加基因组的可塑性以适应极端冶金环境。【结论】SM-1基因组序列的获得为从整体水平揭示喜温嗜酸硫杆菌适应生物冶金环境ROS氧化损伤的防护机制提供了帮助,对于SM-1的ROS防护机制的认知也为进一步通过遗传改造、提升其在高浓度重金属离子冶金环境中的抗性、提高冶金效率提供了理论指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号