首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S Kubota  R Furuta  M Maki    M Hatanaka 《Journal of virology》1992,66(4):2510-2513
A nonfunctional mutant of human immunodeficiency virus type 1 Rev was created by deleting seven amino acid residues within the nucleolar targeting signal. This mutant Rev remained in the cytoplasm in expressed cells and strongly inhibited the function of Rev by interfering with the nuclear/nucleolar localization of coexpressed Rev. These findings strongly suggest the multimerization of Rev in the cytoplasm before migration to the nucleus/nucleolus, where wild-type Rev functions as a trans-regulator.  相似文献   

2.
Two chimeric mutant genes derived from rev of human immunodeficiency virus type 1 and rex of human T-cell leukemia virus type I were constructed to investigate the functions of the nucleolar-targeting signals (NOS) in Rev and Rex proteins. A chimeric Rex protein whose NOS region was substituted with the NOS of Rev was located predominantly in the cell nucleolus and functioned like the wild-type protein in the Rex assay system. However, a chimeric Rev with the NOS of Rex abolished Rev function despite its nucleolar localization. This nonfunctional nucleolar-targeting chimeric protein inhibited the function of both Rex and Rev. In the same experimental conditions, this mutant interfered with the localization of the functional Rex in the nucleolus.  相似文献   

3.
The human immunodeficiency virus type 1 Rev protein controls expression of certain viral RNAs by binding to these RNAs in the nucleus. To investigate how dominant negative Rev mutants inhibit Rev function, we fused such mutants to hormone-dependent localization signals from the glucocorticoid receptor. Each was found to have fully potent inhibitory activity whether expressed in the nucleus or in the cytoplasm. Wild-type Rev colocalized with an inhibitory fusion protein, implying that the two proteins interact. The resulting complexes accumulated within nuclei in response to steroids but had no effect on expression of Rev-responsive mRNAs. A mutation known to block in vitro oligomerization of Rev abolished both complex formation and inhibitory activity of the mutant fusion proteins. Thus, trans-dominant inhibition of Rev does not require competition for nuclear substrates but may instead reflect the ability of a mutant to form nonfunctional complexes with the wild-type protein in vivo.  相似文献   

4.
The herpes simplex virus host shutoff RNase (VHS-RNase) is the major early block of host responses to infection. VHS-RNase is introduced into cells during infection and selectively degrades stable mRNAs made before infection and the normally short-lived AU-rich stress response mRNAs induced by sensors of innate immunity. Through its interactions with pUL47, another tegument protein, it spares from degradation viral mRNAs. Analyses of embedded motifs revealed that VHS-RNase contains a nuclear export signal (NES) but not a nuclear localization signal. To reconcile the potential nuclear localization with earlier studies showing that VHS-RNase degrades mRNAs in polyribosomes, we constructed a mutant in which NES was ablated. Comparison of the mutant and wild-type VHS-RNases revealed the following. (i) On infection, VHS-RNase is transported to the nucleus, but only the wild-type protein shuttles between the nucleus and cytoplasm. (ii) Both VHS-RNases localized in the cytoplasm following transfection. On cotransfection with pUL47, a fraction of VHS-RNase was translocated to the nucleus, suggesting that pUL47 may enable nuclear localization of VHS-RNase. (iii) In infected cells, VHS-RNase lacking NES degraded the short-lived AU-rich mRNAs but not the stable mRNAs. In transfected cells, both wild-type and NES mutant VHS-RNases effectively degraded cellular mRNAs. Our results suggest that the stable mRNAs are degraded in the cytoplasm, whereas the AU-rich mRNAs may be degraded in both cellular compartments. The selective sparing of viral mRNAs may take place during the nuclear phase in the course of interaction of pUL47, VHS-RNase, and nascent viral mRNAs.  相似文献   

5.
The human immunodeficiency virus type 1 Rev trans activator binds directly to unspliced viral mRNA in the nucleus and activates its transport to the cytoplasm. In additon to the sequences that confer RNA binding and nuclear localization, Rev has a carboxy-terminal region, the activation domain, whose integrity is essential for biological activity. Because it has been established that Rev constitutively exits and reenters the nucleus and that the activation domain is required for nuclear exit, it has been proposed that Rev's activation domain is a nuclear export signal (NES). Here, we used microinjection-based assays to demonstrate that the activation domain of human immunodeficiency virus type 1 Rev imparts rapid nuclear export after its transfer to heterologous substrates. NES- mediated export is specific, as it is sensitive both to inactivation by missense mutation and to selective inhibition by an excess of the wild-type, but not mutant, activation domain peptide. Examination of the Rev trans activators of two nonprimate lentiviruses, visna virus and equine infectious anemia virus, revealed that their activation domains are also potent NESs. Taken together, these data demonstrate that nuclear export can be determined by positively acting peptide motifs, namely, NESs, and suggest that Rev proteins activate viral RNA transport by providing export ribonucleoproteins with specific information that targets them to the cytoplasm.  相似文献   

6.
7.
8.
The human immunodeficiency virus rev gene product regulates the expression of viral structural genes. It was recently shown that Rev regulates the export of viral structural mRNAs from the nucleus to the cytoplasm. Analysis of Rev subcellular localization reveals marked accumulation in the nucleolus, suggesting a role for the nucleolus in this export process. We report here the identification of amino acid residues critical to the nucleolar localization of Rev. Consistent with this finding, a Rev/beta-galactosidase fusion protein, harboring this region of Rev, localized entirely within the nucleolus. Of most significance, mutations that eliminated nucleolar localization markedly diminished Rev function, even though accumulation in the nucleoplasm was retained. These findings support a model whereby Rev-induced export of human immunodeficiency virus structural mRNAs from the nucleus to the cytoplasm is likely to involve nucleolar events.  相似文献   

9.
Applications of transdominant mutants of human immunodeficiency virus type 1 (HIV-1) regulatory proteins, especially Rev mutant, have been attempted for gene therapy against AIDS, because the Rev protein is essential for viral replication. We have previously reported that a mutant Rev protein (dRev) lacking its nucleolar targeting signal remained out of nuclei in expressed cells and strongly inhibited the function of Rev. To investigate the effects of dRev on HIV-1 replication, we established several dRev-expressing human cell lines with two different vector systems and examined virus production in these cells. An HIV-1-derived vector containing drev cDNA was constructed and introduced into CD4-positive HeLa cells and cells of the human T-cell line CCRF-CEM (CEM). In dRev-expressing HeLa cells, virus replication, syncytium formation, and cell death caused by HIV-1 infection were remarkably suppressed, and the same vector also conferred a resistant phenotype on CEM cells. The production was also suppressed in CEM cells containing the drev gene driven by a cytomegalovirus promoter. In addition, we found that dRev did not cause nucleolar dysfunction in a transient assay, in contrast to other transdominant mutants and wild-type Rev. Since dRev cannot migrate into the nuclei, it is expected not to interfere with nuclear/nucleolar functions of the host cell. We conclude that dRev is one promising candidate as an antiviral molecule for gene therapy against AIDS.  相似文献   

10.
11.
The human immunodeficiency Rev protein shuttles between the nucleus and cytoplasm, while accumulating to high levels in the nucleus. Rev has a nuclear localization signal (NLS; AA 35-50) with an arginine-rich motif (ARM) that interacts with importin beta and a leucine-rich nuclear export signal (NES; AA 75-84) recognized by CRM1/exportin 1. Here we explore nuclear targeting activities of the transport signals of Rev. GFP tagging and quantitative fluorescence microscopy were used to study the localization behavior of Rev NLS/ARM mutants under conditions inhibiting the export of Rev. Rev mutant M5 was actively transported to the nucleus, despite its known failure to bind importin beta. Microinjection of transport substrates with Rev-NES peptides revealed that the Rev-NES has both nuclear import and export activities. Replacement of amino acid residues "PLER" (77-80) of the NES with alanines abolished bidirectional transport activity of the Rev-NES. These results indicate that both transport signals of Rev have nuclear import capabilities and that the Rev NLS has more than one nuclear targeting activity. This suggests that Rev is able to use various routes for nuclear entry rather than depending on a single pathway.  相似文献   

12.
The human immunodeficiency virus type 1 (HIV-1) Rev protein facilitates the nuclear export of viral mRNA containing the Rev response element (RRE). Although several host proteins co-operating with Rev in viral RNA export have been reported, little is known about the innate host defense factors that Rev overcomes to mediate the nuclear export of unspliced viral mRNAs. We report here that an anti-apoptotic protein, HS1-associated protein X-1 (Hax-1), a target of HIV-1 Vpr, interacts with Rev and inhibits its activity in RRE-mediated gene expression. Co-expression of Sam68 emancipates Rev activity from Hax-1-mediated inhibition. Hax-1 does not bind to RRE RNA by itself, but inhibits Rev from binding to RRE RNA in vitro. The impact of Hax-1 on Rev/RRE interactions in vitro correlates well with the reduced level of RRE-containing mRNA in vivo. Immunofluorescence studies further reveal that Hax-1 and Rev are cytoplasmic and nuclear proteins, respectively, when expressed independently. However, in Hax-1 co-expressing cells, Rev is translocated from the nucleus to the cytoplasm, where it is co-localized with Hax-1 in the cytoplasm. We propose that over-expression of Hax-1, possibly through binding to Rev, may interfere with the stability/export of RRE-containing mRNA and target the RNA for degradation.  相似文献   

13.
The impact of the Rev protein of the human immunodeficiency virus type 1 (HIV-1) on RNA transport, intranuclear RNA distribution, and gene expression was examined for two Rev-dependent expression systems by means of fluorescence in situ hybridization, immunofluorescence, S1 nuclease protection, and functional assays. In the pgTat expression system, which utilizes authentic HIV-1 splice signals, unspliced mRNA remained entrapped in the nucleus in the absence of Rev and was exported to the cytoplasm in its presence, consistent with published findings. In the pSVAR expression system, significant levels of mRNA were found in the nucleus and cytoplasm in both the presence and absence of Rev, but only in the presence of Rev was mRNA translated into protein. The presence of cytoplasmic untranslated mRNA in the absence of Rev was demonstrated by in situ hybridization analysis of individual cells as well as by S1 nuclease analysis of cell populations. The results indicate that Rev has the potential to affect translation as well as transport, suggesting the possibility that cellular mechanisms exist whereby the translational efficiency of an mRNA may be affected by the manner in which it is transported from the nucleus. Fluorescence hybridization also provided high-resolution visualization of the intranuclear distribution of RNAs containing the Rev response element. This demonstrated for both expression systems that mRNA was not highly localized in tracks or around the nucleolus in the presence or absence of Rev, a nucleolar protein, but was more widely distributed throughout the nucleus. In pgTat transfectants, HIV-1 RNA often became localized in 5 to 20 discrete large intranuclear clusters in the presence of Rev, the potential significance of which is discussed.  相似文献   

14.
Herpes simplex virus 1 causes a shutoff of cellular protein synthesis through the degradation of RNA that is mediated by the virion host shutoff (Vhs) protein encoded by the U(L)41 gene. We reported elsewhere that the Vhs-dependent degradation of RNA is selective, and we identified RNAs containing AU-rich elements (AREs) that were upregulated after infection but degraded by deadenylation and progressive 3'-to-5' degradation. We also identified upregulated RNAs that were not subject to Vhs-dependent degradation (A. Esclatine, B. Taddeo, L. Evans, and B. Roizman, Proc. Natl. Acad. Sci. USA 101:3603-3608, 2004). Among the latter was the RNA encoding tristetraprolin, a protein that binds AREs and is known to be associated with the degradation of RNAs containing AREs. Prompted by this observation, we examined the status of the ARE binding proteins tristetraprolin and TIA-1/TIAR in infected cells. We report that tristetraprolin was made and accumulated in the cytoplasm of wild-type virus-infected human foreskin fibroblasts as early as 2 h and in HEp-2 cells as early as 6 h after infection. The amounts of tristetraprolin that accumulated in the cytoplasm of cells infected with a mutant virus lacking U(L)41 were significantly lower than those in wild-type virus-infected cells. The localization of tristetraprolin was not modified in cells infected with a mutant lacking the gene encoding infected cell protein 4 (ICP4). TIA-1 and TIAR are two other proteins that are associated with the regulation of ARE-containing RNAs and that normally reside in nuclei. In infected cells, they started to accumulate in the cytoplasm after 6 h of infection. In cells infected with the mutant virus lacking U(L)41, TIA-1/TIAR accumulated in the cytoplasm in granular structures reminiscent of stress granules in a significant percentage of the cells. In addition, an antibody to tristetraprolin coprecipitated the Vhs protein from lysates of cells late in infection. The results indicate that the Vhs-dependent degradation of ARE-containing RNAs correlates with the transactivation, cytoplasmic accumulation, and persistence of tristetraprolin in infected cells.  相似文献   

15.
The human immunodeficiency virus type 1 nucleocytoplasmic shuttle protein Rev moves repeatedly between the cytoplasm, a perinuclear zone, the nucleoli, and nucleoplasmic speckles. In this study, we demonstrated by both indirect immunofluorescence and Western immunoblot analysis that nuclear exit of Rev transdominant negative mutants was defective compared with that of wild-type Rev. The basic and activation domains of Rev signal import and export, respectively, of Rev across the nuclear membrane. In cotransfection experiments, mutants containing mutations of Rev inhibited the nuclear egress of wild-type Rev, thus revealing a novel transdominant negative phenotype.  相似文献   

16.
A Ponten  C Sick  M Weeber  O Haller    G Kochs 《Journal of virology》1997,71(4):2591-2599
Human MxA protein is an interferon-induced 76-kDa GTPase that exhibits antiviral activity against several RNA viruses. Wild-type MxA accumulates in the cytoplasm of cells. TMxA, a modified form of wild-type MxA carrying a foreign nuclear localization signal, accumulates in the cell nucleus. Here we show that MxA protein is translocated into the nucleus together with TMxA when both proteins are expressed simultaneously in the same cell, demonstrating that MxA molecules form tight complexes in living cells. To define domains important for MxA-MxA interaction and antiviral function in vivo, we expressed mutant forms of MxA together with wild-type MxA or TMxA in appropriate cells and analyzed subcellular localization and interfering effects. An MxA deletion mutant, MxA(359-572), formed heterooligomers with TMxA and was translocated to the nucleus, indicating that the region between amino acid positions 359 and 572 contains an interaction domain which is critical for oligomerization of MxA proteins. Mutant T103A with threonine at position 103 replaced by alanine had lost both GTPase and antiviral activities. T103A exhibited a dominant-interfering effect on the antiviral activity of wild-type MxA rendering MxA-expressing cells susceptible to infection with influenza A virus, Thogoto virus, and vesicular stomatitis virus. To determine which sequences are critical for the dominant-negative effect of T103A, we expressed truncated forms of T103A together with wild-type protein. A C-terminal deletion mutant lacking the last 90 amino acids had lost interfering capacity, indicating that an intact C terminus was required. Surprisingly, a truncated version of MxA representing only the C-terminal half of the molecule exerted also a dominant-negative effect on wild-type function, demonstrating that sequences in the C-terminal moiety of MxA are necessary and sufficient for interference. However, all MxA mutants formed hetero-oligomers with TMxA and were translocated to the nucleus, indicating that physical interaction alone is not sufficient for disturbing wild-type function. We propose that dominant-negative mutants directly influence wild-type activity within hetero-oligomers or else compete with wild-type MxA for a cellular or viral target.  相似文献   

17.
The ins and outs of HIV Rev.   总被引:13,自引:0,他引:13  
The Rev protein of the human immunodeficiency virus mediates the nuclear export of the intron-containing viral messages. This export is a consequence of the continuous shuttling of HIV Rev between the nucleus and cytoplasm. This shuttling is mediated by a nuclear localization signal and a nuclear export signal contained within Rev. Recently, several factors which are required for the movement of Rev through the nuclear pore have been identified. This review will focus on these factors and their role the nucleocytoplasmic shuttling of HIV Rev.  相似文献   

18.
Nuclear export of intron-containing human immunodeficiency virus type 1 RNA is mediated by the viral Rev protein. Rev is a nucleocytoplasmic transport protein that directly binds to its cis-acting Rev-responsive element RNA. Rev function depends on its ability to multimerize. The in vivo dynamics and the subcellular dependence of this process are still largely unexplored. To visualize and quantitatively analyze the mechanism of Rev multimeric assembly in live cells, we used high resolution in vivo fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching. By using two different dynamic FRET approaches (acceptor photobleaching and donor bleaching time measurements), we observed a strong Rev-Rev interaction in the nucleoli of living cells. Most interestingly, we could also detect Rev multimerization in the cytoplasm; however, FRET efficiency in the cytoplasm was significantly lower than in the nucleolus. By using fluorescence recovery after photobleaching, we investigated the mobility of Rev within the nucleolus. Mathematical modeling of the fluorescence recovery after photobleaching recoveries enabled us to extract relative association and dissociation constants and the diffusion coefficient of Rev in the nucleolus. Our results show that Rev multimerizes in the nucleolus of living cells, suggesting an important role of the nucleolus in nucleocytoplasmic transport.  相似文献   

19.
20.
The Rev transactivator protein of human immunodeficiency virus type 1 (HIV-1) is required for protein expression from the HIV-1 RNAs which contain a binding site for the Rev protein, termed the Rev-responsive element (RRE). This transactivator acts both at the level of splicing/transport of nuclear RNAs and at the level of translation of cytoplasmic RNAs. We used a monoclonal antibody specific for the HIV-1 Rev protein to immunoprecipitate cellular extracts from HIV-1-infected and -transfected cells. High levels of specific binding of wild-type Rev to the RRE-containing RNAs were found in cytoplasmic, but not nuclear, extracts from these cells. A Rev mutant which lacked both nuclear and cytoplasmic Rev function but retained RNA binding in vivo was generated. This binding was detectable with both nuclear and cytoplasmic extracts. These results verify the existence of direct binding of Rev to HIV-1 RNAs in vivo and conclusively prove that binding of Rev is not sufficient for nuclear or cytoplasmic Rev function. The results also support a direct role for Rev in the nuclear export and translation of HIV-1 RNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号