首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In order to find novel nonhydroxamate histone deacetylase (HDAC) inhibitors, a series of thiol-based compounds modeled after suberoylanilide hydroxamic acid (SAHA) was synthesized, and their inhibitory effect on HDACs was evaluated. Compound 6, in which the hydroxamic acid of SAHA was replaced by a thiol, was found to be as potent as SAHA, and optimization of this series led to the identification of HDAC inhibitors more potent than SAHA.  相似文献   

3.
In order to find novel non-hydroxamate histone deacetylase (HDAC) inhibitors, a series of compounds modeled after suberoylanilide hydroxamic acid (SAHA) were designed and synthesized as (i) substrate (acetyl lysine) analogues (compounds 3–7), (ii) analogues bearing various functional groups expected to chelate zinc ion (compounds 8–15), and (iii) analogues bearing nucleophilic functional groups which could bind covalently to HDACs (compounds 16–18). In this series, semicarbazide 8b and bromoacetamides 18b,c were found to be potent HDAC inhibitors for non-hydroxamates.  相似文献   

4.
Inhibition of human histone deacetylases (HDACs) has emerged as a novel concept in the chemotherapeutic treatment of cancer. Two chemical entities, SAHA (ZOLINZA, Merck) and romidepsin (Istodax, Celgene) have been recently approved by the FDA as first-in-class drugs against cutaneous T-cell lymphoma. Clinical use of these drugs revealed several side effects including gastro-intestinal symptoms, fatigue, thrombocytopenia, thrombosis. Romidepsin is associated with an yet unresolved cardiotoxicity issue. A general hypothesis for the diminishment of unwanted adverse effects and an improved therapeutical window suggests the development of more isotype selective inhibitors. In this study the first time HDAC inhibitors with perfluorinated spacers between the zinc chelating moiety and the aromatic capping group were synthesized and tested against representatives of HDAC classes I, IIa and IIb. Competitive binding assays and a combined approach by using blind docking and molecular dynamics support binding of the perfluorinated analogs of SAHA to the active site of the HDAC-like amidohydrolase from Bordetella/Alcaligenes and presumably also to human HDACs. In contrast to the alkyl spacer of SAHA and derivatives, the perfluorinated alkyl spacer seems to contribute to or facilitate the induction of selectivity for class II, particularly class IIa, HDACs even though the overall potency of the perfluorinated SAHA analogs in this study against human HDACs remained still rather moderate in the micromolar range.  相似文献   

5.
In our search for novel histone deacetylases inhibitors, we have designed and synthesized a series of novel hydroxamic acids and N‐hydroxybenzamides incorporating quinazoline heterocycles ( 4a  –  4i , 6a  –  6i ). Bioevaluation showed that these quinazoline‐based hydroxamic acids and N‐hydroxybenzamides were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI‐H23, lung). In term of cytotoxicity, several compounds, e.g., 4g , 4c , 4g  –  4i , 6c , and 6h , displayed from 5‐ up to 10‐fold higher potency than SAHA (suberoylanilidehydroxamic acid, vorinostat). The compounds were also generally comparable to SAHA in inhibiting HDACs with IC50 values in sub‐micromolar range. Some compounds, e.g., 4g , 6c , 6e , and 6h , were even more potent HDAC inhibitors compared to SAHA in HeLa extract assay. Docking studies demonstrated that the compounds tightly bound to HDAC2 at the active binding site with binding affinities higher than that of SAHA. Detailed investigation on the estimation of absorption, distribution, metabolism, excretion, and toxicity (ADMET) suggested that compounds 4g , 6c , and 6g , while showing potent HDAC2 inhibitory activity and cytotoxicity, also potentially displayed ADMET characteristics desirable to be expected as promising anticancer drug candidates.  相似文献   

6.
7.
A novel series of N-aryl salicylamides with a hydroxamic acid moiety at 5-position were synthesized efficiently. Their activities against EGFR kinase and HDACs were evaluated. All compounds displayed inhibitory activity against EGFR and HDACs. The antiproliferative activities of synthesized compounds were evaluated by MTT method against human cancer cell lines A431, A549 and HL-60. Compound 1o showed the most potent inhibitory activity against A431 and A549. Compounds 1k and 1n exhibited higher potency against HL-60 than gefitinib and SAHA. N-Aryl salicylamides with a hydroxamic acid moiety at 5-position is another new HDAC-EGFR dual inhibitors.  相似文献   

8.
9.
Histone deacetylase inhibitors (HDACi) suppress cancer cell growth, inflammation, and bone resorption. The aim of this study was to determine the effect of inhibitors of different HDAC classes on human osteoclast activity in vitro. Human osteoclasts generated from blood mononuclear cells stimulated with receptor activator of nuclear factor kappa B (RANK) ligand were treated with a novel compound targeting classes I and II HDACs (1179.4b), MS‐275 (targets class I HDACs), 2664.12 (targets class II HDACs), or suberoylanilide hydroxamic acid (SAHA; targets classes I and II HDACs). Osteoclast differentiation was assessed by expression of tartrate resistant acid phosphatase and resorption of dentine. Expression of mRNA encoding for osteoclast genes including RANK, calcitonin receptor (CTR), c‐Fos, tumur necrosis factor (TNF) receptor associated factor (TRAF)6, nuclear factor of activated T cells (NFATc1), interferon‐β, TNF‐like weak inducer of apoptosis (TWEAK), and osteoclast‐associated receptor (OSCAR) were assessed. Expression of HDACs 1–10 during osteoclast development was also assessed. 1179.4b significantly reduced osteoclast activity (IC50 < 0.16 nM). MS‐275 (IC50 54.4 nM) and 2664.12 (IC50 > 100 nM) were markedly less effective. A combination of MS‐275 and 2664.12 inhibited osteoclast activity similar to 1179.4b (IC50 0.35 nM). SAHA was shown to suppress osteoclast activity (IC50 12 nM). 1179.4b significantly (P < 0.05) reduced NFATc1, CTR, and OSCAR expression during the later stages of osteoclast development. Class I HDAC 8 and Class II HDAC5 were both elevated (P < 0.05) during osteoclast development. Results suggest that inhibition of both classes I and II HDACs may be required to suppress human osteoclastic bone resorption in vitro. J. Cell. Physiol. 226: 3233–3241, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
Histone deacetylases (HDAC) are promising targets for cancer chemotherapy. HDAC inhibitors are thought to act in part by disrupting normal cell cycle regulation, resulting in apoptosis and/or differentiation of transformed cells. Several HDAC inhibitors, which contain hydrophobic tails and the Zn(2+) chelator hydroxyamic acid as a head group, are potent inhibitors of HDACs both in vitro and in vivo. In this study, a related class of compounds with a N-formyl hydroxylamino head group has been synthesized and their ability to inhibit HDACs have been assayed in biochemical and cellular assays. These compounds were found to have comparable activities to suberoylanilide hydroxyamic acid (SAHA) in HDAC enzymatic assays and histone hyperacetylation cellular assays.  相似文献   

11.
Among a panel of histone deacetylase (HDAC) inhibitors investigated, suberoylanilide hydroxamic acid (SAHA) evolved as a potent and non-toxic candidate drug for the treatment of spinal muscular atrophy (SMA), an alpha-motoneurone disorder caused by insufficient survival motor neuron (SMN) protein levels. SAHA increased SMN levels at low micromolar concentrations in several neuroectodermal tissues, including rat hippocampal brain slices and motoneurone-rich cell fractions, and its therapeutic capacity was confirmed using a novel human brain slice culture assay. SAHA activated survival motor neuron gene 2 (SMN2), the target gene for SMA therapy, and inhibited HDACs at submicromolar doses, providing evidence that SAHA is more efficient than the HDAC inhibitor valproic acid, which is under clinical investigation for SMA treatment. In contrast to SAHA, the compounds m-Carboxycinnamic acid bis-Hydroxamide, suberoyl bishydroxamic acid and M344 displayed unfavourable toxicity profiles, whereas MS-275 failed to increase SMN levels. Clinical trials have revealed that SAHA, which is under investigation for cancer treatment, has a good oral bioavailability and is well tolerated, allowing in vivo concentrations shown to increase SMN levels to be achieved. Because SAHA crosses the blood-brain barrier, oral administration may allow deceleration of progressive alpha-motoneurone degeneration by epigenetic SMN2 gene activation.  相似文献   

12.
The present article describes the synthesis and biological activity of various series of novel hydroxamic acids incorporating quinazolin‐4(3H)‐ones as novel small molecules targeting histone deacetylases. Biological evaluation showed that these hydroxamic acids were potently cytotoxic against three human cancer cell lines (SW620, colon; PC‐3, prostate; NCI?H23, lung). Most compounds displayed superior cytotoxicity than SAHA (suberoylanilide hydroxamic acid, Vorinostat) in term of cytotoxicity. Especially, N‐hydroxy‐7‐(7‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5b ) and N‐hydroxy‐7‐(6‐methyl‐4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5c ) (IC50 values, 0.10–0.16 μm ) were found to be approximately 30‐fold more cytotoxic than SAHA (IC50 values of 3.29–3.67 μm ). N‐Hydroxy‐7‐(4‐oxoquinazolin‐3(4H)‐yl)heptanamide ( 5a ; IC50 values of 0.21–0.38 μm ) was approximately 10‐ to 15‐fold more potent than SAHA in cytotoxicity assay. These compounds also showed comparable HDAC inhibition potency with IC50 values in sub‐micromolar ranges. Molecular docking experiments indicated that most compounds, as represented by 5b and 5c , strictly bound to HDAC2 at the active binding site with binding affinities much higher than that of SAHA.  相似文献   

13.
A series of hydroxamic acid-based HDACIs with 4-aminoquinazolinyl moieties as capping groups was profiled. Most compounds showed more potent HDACs inhibition activity than clinically used drug SAHA. Among them, compounds 5f and 5h selectively inhibited HDAC 1,2 over HDAC8, and showed strong activity in several cellular assays, not possessing significant toxicity to primary human cells and hERG inhibition. Strikingly, 5f possessed acceptable pharmacokinetic characteristics and exhibited significant antitumor activity in an A549 xenograft model study at well tolerated doses.  相似文献   

14.
Histone deacetylases (HDACs) belong to a group of epigenetic regulatory enzymes that participate in modulating the acetylation level of histone lysine residues as well as non‐histone proteins, and they play a key role in the regulation of gene expression. HDACs are potential anticancer drug targets highly expressed in various kinds of cancer cells. So far, five small molecules targeting HDACs have been approved for the therapy of cancer, and over 20 inhibitors of HDACs are under different phases of clinical trials. Among them, hydroxamate‐based HDAC inhibitors (HDACis) represent a well‐investigated series of chemical entities. The current review covers the recent progress in the discovery process, form SAHA to hydroxamate HDAC inhibitors with branched CAP region and linear linker. At the same time, the pharmacological and structure‐activity relationship (SAR) studies of the specific derivatives from SAHA and the HDACis with branched CAP region and linear linker are also introduced.  相似文献   

15.
《Autophagy》2013,9(10):1521-1522
Cells respond to cytotoxicity by activating a variety of signal transduction pathways. One pathway frequently upregulated during cytotoxic response is macroautophagy (hereafter referred to as autophagy). Previously, we demonstrated that pan-histone deacetylase (HDAC) inhibitors, such as the anticancer agent suberoylanilide hydroxamic acid (SAHA, Vorinostat), can induce autophagy. In this study, we show that HDAC inhibition triggers autophagy by suppressing MTOR and activating the autophagic kinase ULK1. Furthermore, autophagy inhibition can sensitize cells to both apoptotic and nonapoptotic cell death induced by SAHA, suggesting the therapeutic potential of autophagy targeting in combination with SAHA therapy. This study also raised a series of questions: What is the role of HDACs in regulating autophagy? Do individual HDACs have distinct functions in autophagy? How do HDACs regulate the nutrient-sensing kinase MTOR? Since SAHA-induced nonapoptotic cell death is not driven by autophagy, what then is the mechanism underlying the apoptosis-independent death? Tackling these questions should lead to a better understanding of autophagy and HDAC biology and contribute to the development of novel therapeutic strategies.  相似文献   

16.
Cells respond to cytotoxicity by activating a variety of signal transduction pathways. One pathway frequently upregulated during cytotoxic response is macroautophagy (hereafter referred to as autophagy). Previously, we demonstrated that pan-histone deacetylase (HDAC) inhibitors, such as the anticancer agent suberoylanilide hydroxamic acid (SAHA, Vorinostat), can induce autophagy. In this study, we show that HDAC inhibition triggers autophagy by suppressing MTOR and activating the autophagic kinase ULK1. Furthermore, autophagy inhibition can sensitize cells to both apoptotic and nonapoptotic cell death induced by SAHA, suggesting the therapeutic potential of autophagy targeting in combination with SAHA therapy. This study also raised a series of questions: What is the role of HDACs in regulating autophagy? Do individual HDACs have distinct functions in autophagy? How do HDACs regulate the nutrient-sensing kinase MTOR? Since SAHA-induced nonapoptotic cell death is not driven by autophagy, what then is the mechanism underlying the apoptosis-independent death? Tackling these questions should lead to a better understanding of autophagy and HDAC biology and contribute to the development of novel therapeutic strategies.  相似文献   

17.
In this report, we describe new HDAC inhibitors designed to exploit a unique sub-pocket in the HDAC8 active site. These compounds were based on inspection of the available HDAC8 crystal structures bound to various inhibitors, which collectively show that the HDAC8 active site is unusually malleable and can accommodate inhibitor structures that are distinct from the canonical 'zinc binding group-linker-cap group' structures of SAHA, TSA, and similar HDAC inhibitors. Some inhibitors based on this new scaffold are >100-fold selective for HDAC8 over other class I and class II HDACs with IC(50) values <1microM against HDAC8. Furthermore, treatment of human cells with the inhibitors described here shows a unique pattern of hyperacetylated proteins compared with the broad-spectrum HDAC inhibitor TSA.  相似文献   

18.
19.
The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC 11. Class III HDACs, sirtuins 1–7, have an absolute requirement for NAD+, are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti‐cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T‐cell lymphoma. J. Cell. Biochem. 107: 600–608, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The antiproliferative action of hispolon derivatives is stronger than that of related curcumin against several tumor cell lines. Hispolon size, smaller than curcumin, fits better than curcumin into the active site of HDAC6, an enzyme involved in deacetylation of lysine residues. HDACs are considered potential targets for tumor drug discovery and hydroxamates are known inhibitors of HDACs. One of them, SAHA (Vorinostat) is used in clinical studies. Investigations into possible mechanisms for hispolon derivatives active against the HCT116 colon tumor cell line are done after examining the structural results obtained from hispolon X-ray crystal structures as well as performing associated computational docking and Density Functional Theory techniques on HDAC6. These studies show preference for the HDAC6 active site by chelating the Zn center, in contrast with other ineffective hispolon derivatives, that establish only a single bond to the metal center. Structure activity relationships make clear that hydrogenation of the hispolon bridge also leads to single bond (non chelate) hispolon-Zn binding, and consistently nullifies the antiproliferative action against HCT116 tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号