首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A lectin that agglutinates human blood group B erythrocytes but not blood group A and O erythrocytes was isolated from eggs of Ayu sweet fish (Plecoglossus altivelis). The lectin also agglutinates Ehrlich ascites carcinoma cells but not rat ascites hepatoma AH109 or rat sarcoma 150 cells tested. The lectin agglutination was most effectively inhibited by monosaccharides with the first type of configuration, i.e., L-rhamnose, L-mannose and L-lyxose at a concentration of 0.03 mM. The lectin agglutination was moderately inhibited by monosaccharides with the second type of configuration, i.e., D-galactose, D-fucose and D-galacturonic acid at a concentration of 0.4 mM. However, the agglutination was not inhibited by various other monosaccharides and oligosaccharides that have other types of configuration. The basis for an apparent B-specific hemagglutination may be due to the steric similarity of the C2 and C4 of the galactosyl series, the B-specific determinant, and the L-rhamnosyl series, which are the best inhibitors of the lectin activity. The lectin was affinity purified on an L-rhamnosyl-Sepharose column and was characterized as a homogeneous low molecular weight protein (Mr 14 000) with an abundance of hydrophobic amino acids and dicarboxylic amino acid.  相似文献   

2.
A lectin that agglutinates human blood group B erythrocytes but not blood group A and O erythrocytes was isolated from eggs of Ayu sweet fish (Plecoglossus altivelis). The lectin also agglutinates Ehrlich ascites carcinoma cells but not rat ascites hepatoma AH109 or rat sarcoma 150 cells tested. The lectin agglutination was most effectively inhibited by monosaccharides with the first type of configuration, i.e., L-rhamnose, L-mannose and L-lyxose at a concentration of 0.03 mM. The lectin agglutination was moderately inhibited by monosaccharides with the second type of configuration, i.e., D-galactose, D-fucose and D-galacturonic acid at a concentration of 0.4 mM. However, the agglutination was not inhibited by various other monosaccharides and oligosaccharides that have other types of configuration. The basis for an apparent B-specific hemagglutination may be due to the steric similarity of the C2 and C4 of the galactosyl series, the B-specific determinant, and the L-rhamnosyl-Sepharose column and was characterized as a homogeneous low molecular weight protein (Mr 14000) with an abundance of hydrophobic amino acids and dicarboxylic amino acid.  相似文献   

3.
The binding site of chicken hepatic lectin   总被引:3,自引:0,他引:3  
The binding site of the chicken hepatic lectin involved in the clearance of N-acetylglucosamine-terminated serum glycoproteins was explored by a competitive binding assay using 3H-labeled agalacto-orosomucoid and various glycoproteins, polysaccharides, monosaccharides, and glycosides as inhibitors. The binding site is relatively small, involving a terminal nonreducing DGlcNAc structure with an equatorial N-acetamido group on carbon 2 and an equatorial hydroxyl group on carbon 4. Among the mono- and oligosaccharides tested, benzyl alpha DGlcNAc was the best inhibitor, being three times as effective as DGlcNAc; and in general, all alpha-anomeric glycosides were better than beta-glycosides. All oligosaccharides with terminal nonreducing beta DGlcNAc have almost the same inhibitory power, whereas those with nonreducing DGlc or DGal were relatively inactive. Among the serum and blood group glycoproteins, a Smith degraded human H substance with several exposed terminal nonreducing beta DGlcNAc residues was the most active and twice as effective as agalacto-orosomucoid and an A substance, Hog 75 10% precipitate. Almost all hog preparations, some with A or with H activity, were equally effective. A glycopeptide with terminal DGlcNAc was twice as active as one with terminal nonreducing DMan and DGlcNAc residues and almost three times as potent as one with terminal nonreducing DGal; a glycopeptide with terminal sialic acid was inactive. The slopes of the inhibition lines differed, reflecting the heterogeneity of the various determinant groups on the glycoproteins.  相似文献   

4.
It was shown that the efficiency of succinate-cytochrome c reductase inhibitors, i. e. neutral polar substances, negatively charged phenols and 2-hydroxy-3-alkyl-1.4-naphthoquinones, is increased with an increase in their hydrophobicity. Plotting-lg C50 versus lg P for all the three groups of inhibitors, the role of functional groups of the inhibitors in their binding to the corresponding sites of the respiratory chain was determined. The efficiency of inhibition by neutral polar substances does not depend on the chemical nature of the inhibitors and is described by the equation-lg C50 = 0.864 lg P + 0.222 (r = 0.99). The negatively charged group of dissociated phenols determines the specificity of the inhibitor binding to the terminal site of the succinate dehydrogenase complex and is involved in the inhibitor binding to the enzyme. The carbonyl group of 2-hydroxy-3-alkyl-1.4-naphthoquinones selectively increases the affinity and efficiency of binding of these inhibitors to the b-c1 site of the respiratory chain.  相似文献   

5.
The stereospecificity of α-chymotrypsin   总被引:1,自引:0,他引:1       下载免费PDF全文
1. The rates of deacylation of acyl-alpha-chymotrypsins in which the hydrogen-bonding capacity of the acylamino group of the substrate has been systematically removed were measured. 2. The ratio of deacylation rates of l- and d-acyl-enzymes is found to depend largely on the existence in the substrate of an amido -NH- group. 3. The data presented agree with the postulate that the stereospecificity of alpha-chymotrypsin is exercised in catalytic rather than binding steps, and that the active site of the enzyme presents three loci to the substrate: the site containing the catalytic functionalities (including serine-195), the hydrophobic area for amino acid side-chain binding, and a hydrogen-bond acceptor site for acylamino group binding. 4. It is noted that, though the hydrogen-bonding site is crucial for the stereospecificity, the free energy of binding of substrates and inhibitors is dominated by the hydrophobic interaction. 5. It is tentatively proposed that alpha-chymotrypsin selects a high-energy conformation of the substrate when the latter binds at the enzyme's active site.  相似文献   

6.
The structure of some phospholipids that cause agglutination of mouse erythrocytes has been studied. Haemagglutination is a property of non-choline-containing phospholipids; the phosphate group is essential and unsaturated fatty acids optimal. A protein of Mr 70 000 was isolated from mouse erythrocyte membranes which completely inhibited phospholipid-mediated erythrocyte agglutination. It is proposed that this protein is the phospholipid binding site on mouse erythrocytes and the ligand for the human B-lymphocyte receptor for mouse erythrocytes. Preliminary investigations suggest that a similar inhibitor of phospholipid-mediated agglutination is found in serum. Agglutination of mouse erythrocytes by phospholipid and specific inhibition by the 70 kDa membrane protein constitute a simple system for studying the interaction of phospholipid with protein.  相似文献   

7.
Squash seeds proteinase inhibitors form stoichiometric complexes with bovine trypsinogen. In terms of association constants (Ka), the interaction is weak. The inhibitors bind to the zymogen with Ka values of approx. 10(4)M-1 i.e. 2 X 10(7) times weaker than to bovine beta-trypsin. Squash inhibitor with Lys at the P1 position binds to trypsinogen with a Ka value 2.1-fold higher than the inhibitor with Arg at P1. The Ile-Val binding cleft and the Ca2+ binding site of trypsinogen are cooperatively linked to the inhibitor binding site. Although these three sites are spatially separated, either binding of calcium ion or Ile-Val dipeptide to trypsinogen increase the Ka values 3-fold and more than 100-fold, respectively. In the presence of Ile-Val trypsinogen resynthetizes extremely slowly (about 10(4) times slower than beta-trypsin) the reactive site peptide bond in squash inhibitors.  相似文献   

8.
Substrate and substrate analogue binding properties of Renilla luciferase.   总被引:3,自引:0,他引:3  
J C Matthews  K Hori  M J Cormier 《Biochemistry》1977,16(24):5217-5220
Luciferase from the anthozoan coelenterate Renilla reniformis catalyzes the oxidative decarboxylation of luciferin consuming 1 mol of O2 per mol of luciferin oxidized and producing 1 mol of CO2, 1 mol of oxyluciferin, and light (lambdaB, 480 nm) with a 5.5% quantum yield. In this work we have examined the binding characteristics of luciferin, luciferin analogues, and competitive inhibitors of the luciferin-luciferase reaction. The results show that luciferin binding and orientation in the single luciferin binding site of luciferase are highly specific for and dependent upon the three group substituents of the luciferin molecule while the imidazolone-pyrazine nucleus of luciferin is not directly involved in binding. Anaerobic luciferin binding promotes a rapid concentration-dependent aggregation of luciferase which results in irreversible inactivation of the enzyme. This aggregation phenomenon is not observed upon binding of oxyluciferin, luciferyl sulfate, or luciferin analogues in which the substituent at the 2 position of the imidazolone-pyrazine ring has been substantially altered.  相似文献   

9.
Rat intestinal trehalase. Studies of the active site.   总被引:3,自引:1,他引:2       下载免费PDF全文
Rat intestinal trehalase was solubilized, purified and reconstituted into proteoliposomes. With octyl glucoside as the solubilizing detergent, the purified protein appeared as a single band on SDS/polyacrylamide-gel electrophoresis with an apparent molecular mass of 67 kDa. Kinetic studies indicated that the active site of this enzyme can be functionally divided into two adjacent regions, namely a binding site (with pKa 4.8) and a catalytic site (with pKa 7.2). Other findings suggested that the catalytic site contains a functional thiol group, which is sensitive to inhibition by N-ethylmaleimide, Hg2+ and iodoacetate. Substrate protection and iodoacetate labelling of the thiol group demonstrated that only a protein of 67 kDa was labelled. Furthermore, sucrose and phlorizin protected the thiol group, but Tris-like inhibitors did not. Structure-inhibition analysis of Tris-like inhibitors, the pH effect of Tris inhibition and Tris protection of 1-(3-dimethylaminopropyl)-3-ethylcarbodi-imide inactivation permitted characterization and location of a separate site containing a carboxy group for Tris binding, which may also be the binding region. On the basis of these findings, a possible structure for the active site of trehalase is proposed.  相似文献   

10.
We present the results of a series of 10-ns molecular dynamics simulations on Pseudomonas aeruginosa lectin-II (PA-IIL) and its complexes with four different monosaccharides. We compare the saccharide-free, saccharide-occupied, and saccharide- and ion-free forms of the lectin. The results are coupled with analysis of the water density map and calcium coordination. The water density pattern around the binding site in the free lectin molecular dynamics was fitted with that in the X-ray and with the hydroxyl groups of the monosaccharide within the lectin/monosaccharide complexes and the best ligand was predicted based on the best fit. Interestingly, the water density pattern around the binding site in the uncomplexed lectin exactly fitted the O2, O3, and O4 hydroxyl groups of the fucose complex with the lectin. This observation could lead to a hypothesis that the replacement of these three water molecules from the binding site by the monosaccharide decreases the entropy of the complex and increases the entropy of the water molecules, which favors the binding. It suggests that the high density peaks of the solvent around the binding site in the free protein could be the tool to predict hydroxyl group orientation of the sugar in the protein/sugar complexes. The high affinity of PA-IIL binding site is also attributed to the presence of two calcium ions, each of them making five to six coordinations with the protein part and two coordinations with either water or the monosaccharide. When the calcium ions are removed from the simulated system, they are replaced by sodium ions from the solvent. These observations rationalize the high binding affinity of PA-IIL towards fucose.  相似文献   

11.
The crystal structures of beta-amylase from Bacillus cereus var. mycoides in complexes with five inhibitors were solved. The inhibitors used were three substrate analogs, i.e. glucose, maltose (product), and a synthesized compound, O-alpha-D-glucopyranosyl-(1-->4)-O-alpha-D-glucopyranosyl-(1-->4)-D-xylopyranose (GGX), and two affinity-labeling reagents with an epoxy alkyl group at the reducing end of glucose. For all inhibitors, one molecule was bound at the active site cleft and the non-reducing end glucose of the four inhibitors except GGX was located at subsite 1, accompanied by a large conformational change of the flexible loop (residues 93-97), which covered the bound inhibitor. In addition, another molecule of maltose or GGX was bound about 30 A away from the active site. A large movement of residues 330 and 331 around subsite 3 was also observed upon the binding of GGX at subsites 3 to 5. Two affinity-labeling reagents, alpha-EPG and alpha-EBG, were covalently bound to a catalytic residue (Glu-172). A substrate recognition mechanism for the beta-amylase was discussed based on the modes of binding of these inhibitors in the active site cleft.  相似文献   

12.
1. The lectin from the broad bean (Vicia faba) was purified by affinity chromatography by using 3-O-methylglucosamine covalently attached through the amino group to CH-Sepharose (an omega-hexanoic acid derivative of agarose). Its composition and the nature of its subunits were compared with concanavalin A and the lectins from pea and lentil. 2. Unlike the other three lectins, broad-bean lectin is a glycoprotein; a glycopeptide containing glucosamine and mannose was isolated from a proteolytic digest. 3. The mol.wt. is about 47500; the glycoprotein consists of two apprently identical subunits, held together by non-covalent forces. Fragments of the subunits, similar to those found in concanavalin A and soya-bean agglutinin, were found in active preparations. 4. Broad-bean lectin was compared with concanavalin A and the lectins from pea and lentil in an investigation of the inhibition of their action by a number of monosaccharides, methyl ethers of monosaccharides, disaccharides and glycopeptides. The most striking differences concern 3-O-substituted monosaccharides, which are strong inhibitors of the action of broad-bean, pea and lentil lectins but not of the action of concanavalin A. There is, however, no strong inhibition of the action of these lectins by 3-Olinked disaccharides.  相似文献   

13.
A M Wu  J H Wu  Y Y Chen  S C Song  E A Kabat 《Glycobiology》1999,9(11):1161-1170
Bandeiraea (Griffonia) simplicifolia lectin-I, isolectin A(4)(GS I-A(4)), which is cytotoxic to the human colon cancer cell lines, is one of two lectin families derived from its seed extract. It contains only a homo-oligomer of subunit A, and is most specific for GalNAcalpha1-->. In order to elucidate the GS I-A(4)-glycoconjugate interactions in greater detail, the combining site of this lectin was further characterized by enzyme linked lectino-sorbent assay (ELLSA) and by inhibition of lectin-glycoprotein interactions. This study has demonstrated that the Tn-containing glycoproteins tested, consisting of mammalian salivary glycoproteins (armadillo, asialo-hamster sublingual, asialo-ovine, -bovine, and -porcine submandibular), are bound strongly by GS I-A(4.)Among monovalent inhibitors so far tested, p-NO2-phenylalphaGalNAc is the most potent, suggesting that hydrophobic forces are important in the interaction of this lectin. GS I-A(4)is able to accommodate the monosaccharide GalNAc at the nonreducing end of oligosaccharides. This suggests that the combining site of the lectin is a shallow cavity. Among oligosaccharides and monosaccharides tested as inhibitors of the binding of GS I-A(4), the hierarchy of potencies are: GalNAcalpha1-->3GalNAcbeta1-->3Galalpha1-->4Galbeta 1-->4Glc (Forssman pentasaccharide) > GalNAcalpha1-->3(LFucalpha1-->2)Gal (blood group A)()> GalNAc > Galalpha1-->4Gal > Galalpha1-->3Gal (blood group B-like)> Gal.  相似文献   

14.
B G Que  K M Downey  A G So 《Biochemistry》1978,17(9):1603-1606
The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.  相似文献   

15.
NS2B–NS3 protease has been identified to serve as lead drug design target due to its significant role in West Nile viral (WNV) and dengue virus (DENV) reproduction and replication. There are currently no approved chemotherapeutic drugs and effective vaccines to inhibit DENV and WNV infections. In this work, 3D-QSAR pharmacophore model has been developed to discover potential inhibitory candidates. Validation through Fischer’s model and decoy test indicate that the developed 3D pharmacophore model is highly predictive for DENV inhibitors, which was then employed to screen ZINC chemical library to obtain reasonable hits. Following ADMET filtering, 15 hits were subjected to further filter through molecular docking and CoMFA modeling. Finally, top three hits were identified as lead compounds or potential inhibitory candidates with IC50 values of ~0.4637?µM and fitness of ~57.73. It is implied from CoMFA modeling that substituents at the side site of benzotriazole such as a p-nitro group (e.g. biphenyl head) and a carbonyl (e.g. carboxylate function) at the side site of furan or amino group may improve bioactivity of ZINC85645245, respectively. Molecular dynamics simulations (MDS) were performed to discover new interactions and reinforce the binding modes from docking for the hits also. The QSAR and MDS results obtained from this work should be useful in determining structural requirements for inhibitor development as well as in designing more potential inhibitors for NS2B–NS3 protease.  相似文献   

16.
Peptides are preferred for designing inhibitors because of their high activity and specificity. Seven cyclopentapeptide inhibitors were designed in this study against dengue virus type 2 (DEN-2) NS3-NS2B protease: CKRRC, CGRRC, CRGRC, CRTRC, CTRRC, CKRKC and CRRKC. Docking analysis was performed to study the enzyme-inhibitor binding interactions. The free energy binding and estimated Ki values for all the inhibitors were found to be small (within micromolar range), indicating that the inhibitors bind considerably well to the binding site. The results showed that the cyclopentapeptide CKRKC was the best peptide inhibitor candidate with estimated free binding energy of -8.39 kcal/mol and Ki of 0.707 μM when compared to the standard inhibitor Bz-Nle-Lys-Arg-Arg-H that has been experimentally tested and shown to exhibit Ki value of 5.8 μM. Several modes of weak interactions were observed between the cyclopentapeptide CKRKC and the active site of DEN-2 NS3-NS2B protease. Thus, the cyclopentapeptide is proposed as a potential inhibitor to the NS3-NS2B protease activities of DEN-2. While these preliminary results are promising, further experimental investigation is necessary to validate the results.  相似文献   

17.
4,4'-Biphenyl-di-N-butylcarbamate (1), (S)-1,1'-bi-2-naphthyl-2, 2'-di-N-butylcarbamate (S-2), (S)-1, 1'-bi-2-naphthyl-2-N-butylcarbamate-2'-butyrate (S-3), 2, 2'-biphenyl-di-N-butylcarbamate (4), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-octylcarbamate (5), 2, 2'-biphenyl-2-N-octadecylcarbamate-2'-N-phenylcarbamate (6), 2, 2'-biphenyl-2-N-butylcarbamate-2'-butyrate (7), 2, 2'-biphenyl-2-N-butylcarbamate-2'-ol (8), 2, 2'-biphenyl-2-N-octylcarbamate-2'-ol (9), (R)-1, 1'-bi-2-N-naphthyl-2-butylcarbamate-2'-ol (R-10), and glyceryl-1,2, 3-tri-N-butylcarbamate (11) are prepared and evaluated for their inhibition effects on porcine pancreatic cholesterol esterase. All inhibitors are irreversible inhibitors of the enzyme. Carbamates 1-3 and 7-10 are the first alkyl chain and esteratic binding site-directed irreversible inhibitors due to the fact that the reactivity of the enzyme is protected by the irreversible inhibitor, trifluoroacetophenone in the presence of these carbamates. Carbamate 1 is the least potent inhibitor for the enzyme probably due to the fact that the inhibitor molecule adopts a linear conformation and one of the carbamyl groups of the inhibitor molecule covalently interacts with the first alkyl chain binding site of the enzyme while the other carbamyl group of the inhibitor molecule exposes outside the active site. With near orthogonal conformations at the pivot bond of biaryl groups, one carbamyl group of carbamates S-2, S-3, and R-10 covalently binds to the first alkyl chain binding site of the enzyme while the other carbamyl, butyryl, or hydroxy group can not bind covalently to the second alkyl chain binding site probably due to the orthogonal conformations. Carbamates 4-9 and 11 are very potent inhibitors for the enzyme probably due to the fact that all these molecules freely rotate at the pivot bond of the biphenyl or glyceryl group and therefore can fit well into the bent-shaped first and second alkyl chains binding sites of the enzyme. Although, carbamates 4-6 and 11 are irreversible inhibitors of cholesterol esterase, the enzyme is not protected but further inhibited by trifluoroacetophenone in the presence of these carbamates. Therefore, carbamates 4-6 and 11 covalently bind to the first alkyl chain binding site of the enzyme by one of the carbamyl groups and may also bind to the second alkyl chain binding site of the enzyme by the second carbamyl group. Besides the bent-shaped conformation, the inhibition by carbamate 6 is probably assisted by a favorable pi-pi interaction between Phe 324 at the second alkyl chain binding site of the enzyme and the phenyl group of the inhibitor molecule. For cholesterol esterase, carbamates 8-10 are more potent than carbamates S-2, 4, and 5 probably due to the fact that the inhibitor molecules interact with the second alkyl chain binding site of the enzyme through a hydrogen bond between the phenol hydroxy group of the inhibitor molecules and the His 435 residue in that site.  相似文献   

18.
L M Cole  J E Casida 《Life sciences》1986,39(20):1855-1862
The toxicity to mice of intraperitoneally-administered polychlorocycloalkane (PCCA) insecticides is generally correlated with their potency as in vitro inhibitors of the brain specific [35S]t-butylbicyclophosphorothionate [( 35S]TBPS) binding site with correction for metabolic activation and detoxification. These findings from our earlier studies are extended here to in vivo investigations relating convulsant action to inhibition of the TBPS binding site in poisoned mice. Radioligand binding assays involved brain P2 membranes washed three times with 1 mM EDTA to remove endogenous gamma-aminobutyric acid (GABA) or other modulator(s) which otherwise serves as a noncompetitive inhibitor of [35S]TBPS binding at the GABA-regulated chloride ionophore. Examination of lindane, technical toxaphene, toxaphene toxicant A, and 10 polychlorocyclodiene insecticides revealed 62 +/- 4% binding site inhibition 30 min after their LD50 doses with 32 +/- 3% inhibition at one-half and 6 +/- 3% inhibition at one-quarter of their LD50 doses. This correlation between binding site inhibition and convulsant action is also evident in dose- and time-dependency studies with endosulfan sulfate. The brain P2 membranes of treated mice contain the parent compound with each of the PCCAs plus activation products of some of the cyclodienes, i.e. endosulfan sulfate from alpha- and beta-endosulfan and 12-ketoendrin from isodrin and endrin. The finding that the brains of treated mice contain sufficient PCCA or its activation products to achieve a magnitude of [35S]TBPS binding site inhibition correlated with the severity of the poisoning signs supports the hypothesis that the acute toxicity of PCCA insecticides to mammals is due to disruption of the GABA-regulated chloride ionophore.  相似文献   

19.
X-ray crystal structures of carbonic anhydrase II (CAII) complexed with sulfonamide inhibitors illuminate the structural determinants of high affinity binding in the nanomolar regime. The primary binding interaction is the coordination of a primary sulfonamide group to the active site zinc ion. Secondary interactions fine-tune tight binding in regions of the active site cavity >5 A away from zinc, and this work highlights three such features: (1) advantageous conformational restraints of a bicyclic thienothiazene-6-sulfonamide-1,1-dioxide inhibitor skeleton in comparison with a monocyclic 2,5-thiophenedisulfonamide skeleton; (2) optimal substituents attached to a secondary sulfonamide group targeted to interact with hydrophobic patches defined by Phe131, Leu198, and Pro202; and (3) optimal stereochemistry and configuration at the C-4 position of bicyclic thienothiazene-6-sulfonamides; the C-4 substituent can interact with His64, the catalytic proton shuttle. Structure-activity relationships rationalize affinity trends observed during the development of brinzolamide (Azopt), the newest carbonic anhydrase inhibitor approved for the treatment of glaucoma.  相似文献   

20.
Inhibitor and ion binding sites on the gastric H,K-ATPase   总被引:2,自引:0,他引:2  
Munson K  Garcia R  Sachs G 《Biochemistry》2005,44(14):5267-5284
The gastric H,K-ATPase catalyzes electroneutral exchange of H(+) for K(+) as a function of enzyme phosphorylation and dephosphorylation during transition between E(1)/E(1)-P (ion site in) and E(2)-P/E(2) (ion site out) conformations. Here we present homology modeling of the H,K-ATPase in the E(2)-P conformation as a means of predicting the interaction of the enzyme with two known classes of specific inhibitors. All known proton pump inhibitors, PPIs, form a disulfide bond with cysteine 813 that is accessible from the luminal surface. This allows allocation of the binding site to a luminal vestibule adjacent to Cys813 enclosed by part of TM4 and the loop between TM5 and TM6. K(+) competitive imidazo-1,2alpha-pyridines also bind to the luminal surface of the E(2)-P conformation, and their binding excludes PPI reaction. This overlap of the binding sites of the two classes of inhibitors combined with the results of site-directed mutagenesis and cysteine cross-linking allowed preliminary assignment of a docking mode for these reversible compounds in a position close to Glu795 that accounts for the detailed structure/activity relationships known for these compounds. The new E(2)-P model is able to assign a possible mechanism for acid secretion by this P(2)-type ATPase. Several ion binding side chains identified in the sr Ca-ATPase by crystallography are conserved in the Na,K- and H,K-ATPases. Poised in the middle of these, the H,K-ATPase substitutes lysine in place of a serine implicated in K(+) binding in the Na,K-ATPase. Molecular models for hydronium binding to E(1) versus E(2)-P predict outward displacement of the hydronium bound between Asp824, Glu820, and Glu795 by the R-NH(3)(+) of Lys791 during the conformational transition from E(1)P and E(2)P. The site for luminal K(+) binding at low pH is proposed to be between carbonyl oxygens in the nonhelical part of the fourth membrane span and carboxyl oxygens of Glu795 and Glu820. This site of K(+) binding is predicted to destabilize hydrogen bonds between these carboxylates and the -NH(3)(+) group of Lys791, allowing the Lys791 side chain to return to its E(1) position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号